533.6.011.6 Heat exchange and friction in a thin air laminar-turbulent boundary layer over a hemisphere surface

Gorskiy V. V. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Loktionova A. G. (Bauman Moscow State Technical University)

BOUNDARY LAYER, HEAT TRANSFER, FRICTION, TURBULENCE


doi: 10.18698/2309-3684-2019-2-5167


Spherical aircraft elements are related to a number of their fragments influ-enced by the maximum heat fluxes. As a result calculating thermal and force loading of a hemisphere is of particular interest. This problem is one of the most acute within the extremely high Reynolds numbers that correspond to laminar-turbulent gas flow in a boundary layer over a hemisphere. At the same time, the fundamental monograph [1] on the aircraft convective heat exchange, which summarizes the results of many years of research on this problem, doesn’t pay proper attention to this issue. At the same time, the work [2] shows that using the approaches for a hemisphere outlined in the monograph [1] is associated with a number of significant errors within the range of extremely high Reynolds numbers. Calculating heat transfer and friction on the porous wall which correct solution has been missing by now is one of the least studied problems of laminar-turbulent heat exchange. The purpose of this article is to develop a highly accurate engineering method for calculating heat transfer and friction in a laminar-turbulent boundary layer on a hemisphere.


[1] Zemlyanskiy B.A., Lunev V.V., Vlasov V.I., Gorshkov A.B., Zalogin G.N., Kovalev R.V., et al. Konvektivny teploobmen letatelnykh apparatov [Convective heat exchange of aircraft]. Moscow, Fizmatlit Publ., 2014, 377 p.
[2] Gorskii V.V. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2017, no. 3, pp. 90–97.
[3] Gorskii V.V., Kovalsky М.G. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2017, no. 2,
pp. 65–80.
[4] Gorskii V.V., Kovalsky М.G. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2018, no. 2,
pp. 94–105.
[5] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Matematiches-
koe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 3 (3), pp. 3–24.
[6] Girshfelder G., Kertis Ch., Berd R. Molekulyarnaya teoriya gazov i zhidkostey [Molecular theory of gases and liquids]. Moscow, Inostrannaya Literatura Publ., 1961, 929 p.
[7] Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid mechanics]. Moscow, Drofa Publ., 2003, 840 p.
[8] Gorskiy V.V., Fedorov S.N. Inzhenerno-Fizicheskii Zhurnal — Journal of Engineering Thermophysics, 2007, vol. 80, no. 5, pp. 97–101.
[9] Cebeci T., Smith A.M.O. Analysis of Turbulent Boundary Layers. New York, San Francisco, London: Academic Press, 1974, 404 p.
[10] Gorskii V.V., Pugach M.A. Comparison of calculated and experimental data on laminar-turbulent heat transfer on the hemisphere surface streamlined by a supersonic air flow. High Temperature, 2015, vol. 53, iss. 2, pp. 223–227.
[11] Widhopf G.F., Hall R. AIAA Journal, 1972, vol. 10, no. 10, pp. 71–78.
[12] Widhopf G.F. Laminar, Transitional and Turbulent Heat Transfer Measurement on a Yawed Blunt Conical Nose Tip. TR-0172 (S2816-60), 3, Aug, 1972, the Aerospace Corp., San Bernardino, Calif.
[13] Gorskii V.V. Teoreticheskie osnovy rascheta ablyatsionnoy teplovoy zashchity [Theoretical bases of calculation of ablative thermal protection]. Moscow, Nauchnyy mir Publ., 2015, 688 p.
[14] Gorskii V.V., Kovalskii M.A., Pugach M.A. Inzhenerno-Fizicheskii Zhurnal — Journal of Engineering Thermophysics, 2015, vol. 91, no. 5, pp. 1383–1391.
[15] Linnik Yu.V. Metod naimen'shih kvadratov i osnovy matematiko-statisticheskoj teorii obrabotki nablyudenij [Method of minimum squares and fundamentals of the processing observations mathematical and statistical theory]. Moscow, Fizmatgiz Publ., 1958, 333 p.
[16] Aoki M. Vvedenie v metody optimizacii. Osnovy i prilozheniya nelinejnogo programmirovaniya [Introduction to optimization methods. Fundamentals and applications of nonlinear programming]. Moscow, Nauka Publ., 1977, 343 p.
[17] Mugalev V.P. Issledovanie teploobmena i harakteristik pogranichnogo sloya na poristoj poverhnosti [Investigation of heat transfer and characteristics of boundary layer on a porous surface]. Teplo– i massoperenos. T. 1: Teplo– i massoperenos pri vzaimodejstvii tel s potokami zhidkosti i gazov [Heat and mass transfer. Vol. 1. Heat and mass transfer within bodies interaction with flows of liquid and gases]. Minsk, Nauka i tekhnika Publ., 1968, pp. 32–38.
[18] Romanenko P.N. Gidrodinamika i teploobmen v pogranichnom sloe [Hydrodynamics and heat transfer in boundary layer]. Moscow, Energia Publ., 1974, 464 p.
[19] Gorskii V.V., Pugach M.A. Uchenye zapiski TsAGI — TsAGI Scientific Notes, 2016, vol. 47, no. 4, pp. 34–43.
[20] Gorskii V.V., Loktionova A.G. Kosmonavtika i raketostroenie — Astronautics and rocket science, 2018, no. 5, pp. 72–78.


Горский В.В., Локтионова А.Г. Моделирование теплообмена и трения в тонком воздушном ламинарно-турбулентном пограничном слое над поверхностью полусферы. Математическое моделирование и численные методы, 2019, № 2, с. 51–67.



Download article

Количество скачиваний: 83