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Сферические элементы конструкции летательных аппаратов относятся к числу их 
фрагментов, подверженных воздействию максимальных тепловых потоков, вслед-
ствие чего расчет теплового и силового нагружения полусферы вызывает повышен-
ный интерес. Наиболее остро эта проблема стоит при экстремально высоких чис-
лах Рейнольдса, которым соответствует ламинарно-турбулентный режим тече-
ния газа в пограничном слое над полусферой. В то же время в фундаментальной 
монографии [1] по конвективному теплообмену летательных аппаратов, обобща-
ющей результаты многолетних исследований по данной проблеме, именно этому 
вопросу не уделено должного внимания. В то же время в работе [2] было показано, 
что использование подходов, изложенных в работе [1], для полусферы сопряжено с 
внесением в расчет существенных ошибок при экстремально высоких значениях чи-
сел Рейнольдса. К числу наименее изученных проблем ламинарно-турбулентного 
теплообмена относится расчет теплообмена и трения на проницаемой стенке, а 
корректное решение данной задачи к настоящему времени отсутствует. Целью 
данной стать является разработка высокоточного инженерного метода расчета 
теплообмена и трения в ламинарно-турбулентном пограничном слое на полусфере. 
 
Ключевые слова: пограничный слой, теплообмен, трение, турбулентность    
 

Введение. Вся теория турбулентного теплообмена базируется на 
результатах экспериментальных исследований и носит полуэмпириче-
ский характер. В этой связи ключевой вопрос, который встает при про-
ведении конкретных исследований в этой области, заключается в адек-
ватности результатов расчетов, полученных в рамках используемой 
полуэмпирической модели турбулентности, результатам соответству-
ющих экспериментальных исследований. Получению ответа на дан-
ный вопрос и посвящена первая часть данной статьи. 

Наряду с этим значительное внимание здесь уделяется простым 
инженерным методам вычисления основных характеристик теплооб-
мена и трения, полученным путем оптимальной аппроксимации ре-
зультатов систематического численного интегрирования уравнений 
пограничного слоя. 

Необходимо также отметить, что на страницах данного журнала 
вопросам моделирования газовой динамики и теплообмена уделяется 
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значительное внимание [3–5]. 
Методика моделирования теплообмена и трения в ламинарно-

турбулентном пограничном слое. Все результаты проведенных ис-
следований получены с использованием метода эффективной длины 
[1] и методики [2] численного интегрирования уравнений погранич-
ного слоя. 

Они  выполнены в широком диапазоне изменения чисел Маха M  

и Рейнольдса Re , рассчитанных по параметрам газа в набегающем 

потоке и радиусу сферы, и отношения hR  энтальпии воздуха на стенке 

wh  к энтальпии торможения 00h  этого потока. При этом исследования 

проведены для полусферы как элемента конструкции летательных ап-
паратов, обладающего наиболее высоким уровнем тепловой нагрузки. 

В процессе проведения систематических численных решений 
уравнений воздушного пограничного слоя принималось: 

 что расчет диффузионного теплопереноса описывается уравне-
ниями Стефана – Максвелла [6], а воздушная газовая смесь находится 
в состоянии термохимического равновесия; 

 что используются результаты численного решения уравнений 
Эйлера, стандартная система уравнений двумерного осесимметрич-
ного пограничного слоя [7] и методика расчета переносных свойств 
газовой смеси [8];  

 что используется алгебраическая модель Себечи – Смита [9], 
модифицированная в работе [2] для расчета турбулентной составляю-
щей коэффициента динамической вязкости, в сочетании со значени-
ями турбулентных чисел Шмита и Прандтля, равных соответственно 
1 и 0,9 [1]. 

Результаты моделирования теплообмена и трения в лами-
нарно-турбулентном пограничном слое на полусфере. В работе [1] 
отмечено, что на боковых поверхностях конусов, обтекаемых потоком 
воздуха при умеренных значениях чисел Рейнольдса, применение как 
метода эффективной длины, так и различных методик численного ин-
тегрирования уравнений ламинарно-турбулентного пограничного 
слоя, находятся в удовлетворительном соответствии с результатами 
трубных экспериментов. Однако обоснованность этого утверждения 
для экстремально больших чисел Рейнольдса в литературе отсут-
ствует, а вопросу сопоставления расчетных и экспериментальных дан-
ных для градиентных течений газа вовсе не уделено должного внима-
ния, на что и указано в работах [2, 10]. 

В работе [2], в частности, было показано: 
 что при больших числах Рейнольдса использование для расчета 

конвективного теплообмена на полусфере как метода эффективной 
длины, так и численного интегрирования уравнений пограничного 
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слоя в сочетании с полуэмпирической моделью турбулентной вязко-
сти Себечи – Смита [9], приводит к существенному завышению полу-
ченных результатов по сравнению с экспериментальными данными из 
работ [11, 12]; 

 что указанная проблема, в частности, может быть решена в рам-
ках модифицированной модели турбулентной вязкости Себечи –
Смита, предложенной в работе [2]. 

Поэтому значительный интерес вызывает рассмотрение вопроса о 
том, к каким последствиям приводит замена метода эффективной 
длины, повсеместно используемого при проектировании летательных 
аппаратов [1], на методику работы [2] в реальных условиях обтекания 
полусферы сверхзвуковым потоком воздуха. 

В данной работе рассматривается задача систематического изуче-
ния течения газа над поверхностью полусферы, при указанных в табл. 
1 значениях определяющих параметров, здесь wT  — температура 

стенки в критической точке сферы. 
Таблица 1 

Значения определяющих параметров 

M  0p  hR  6Re 10  ,wT K  

25 

[1, 10] 

[0,12, 0,1] [0,5, ·5] [300, 2400] 
20 [0,17, 0,2] [0,6, 6] [300, 2900] 
15 [0,28, 0,3] [0,8, ·8] [300, 2700] 
10 [0,056, 0,4] [1,0, ·10] [280, 2000] 
8 1 [0,083, 0,4] 1,6 [270, 1100] 
6 1 [0,135; 0,4] 2,2 [250, 700] 
4 1 [0,270; 0,4] 2,7 [30, 400] 

 

Введем в обращение числа Стантона St im  и ,St f im , связанные с 

удельным тепловым потоком ,w imq , подводимым к стенке, и напряже-

нием трения  ,w imFr  на ней соотношениями вида: 
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Здесь eu  — скорость на внешней границе пограничного слоя, м/с;

, V   — плотность, кг/м3; и скорость в набегающем газовом потоке, 

а индекс im  означает непроницаемую стенку. 
Широко используемые на практике литературные рекомендации 

[1] по инженерному расчету распределения интенсивности турбулент-
ного теплообмена по полусфере, установленные на базе аппроксима-
ции результатов счета, полученным в рамках метода эффективной 
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длины, включают в себя формулы, предназначенные для вычисления 

максимального значения числа Стантона ,StT im
  и функции 

    , , ,St St .T im T im T im      

Эти формулы имеют вид: 

       2/31,25 0,8 0
,

,216, 4 /1000 / 9,806 1 ,St im hT V L R 
     (1) 

      ,
23,75sin 3,5sin .T im       (2) 

Здесь   — центральный угол полусферы, а единичному значению 
функции  ,T im   соответствует его величина, равная примерно 

5,6  радиан. 
В области изменения температуры в набегающем потоке в преде-

лах от 216 до 273 К, что соответствует рассматриваемым условиям об-

текания полусферы, формулу для расчета числа Стантона ,StT im
  с по-

грешностью не выше 1% можно преобразовать к следующей критери-
альной форме записи 

  2/3* * 0,2 0,45
, ,St Re 1 0,0567 M .H im T im hR          (3) 

На риc. 1 и 2 приведены результаты систематических расчетных 
исследований, выполненных в рамках различных подходов к опреде-

лению *
,H im  и ,T im . Светлые и зачерненные значки здесь относятся к 

расчетам, выполненным соответственно в рамках метода эффективной 
длины и численного интегрирования уравнений пограничного слоя. В 
свою очередь, сплошная кривая соответствует расчету, выполненному 
по формуле (3). 

В целом из рассмотрения информации, приведенной на данных 
рисунках, можно сделать выводы о том: 

 что метод эффективной длины характеризуется крайне незна-

чительной чувствительностью функции  *
, MH im   и  ,T im   по от-

ношению к условиям в набегающем потоке воздуха; 
 что формулы (1) и (2) действительно обеспечивают расчет этих 

функций, полученных по методу эффективной длины, с точностью, 
достаточной для большинства практических приложений; 

 что применение метода эффективной длины сопряжено с суще-
ственным завышением интенсивности теплообмена по сравнению с 
использованием численного интегрирования уравнений пограничного 
слоя. 
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Последний вывод находится в полном соответствии с результа-
тами аналогичного сравнения, выполненного в работах [2, 10] приме-
нительно к экспериментальным данным из работ [11, 12]. 

 

Рис. 1. Зависимость максимального значения критерия теплообмена от M  

 

 

Рис. 2. Зависимость относительного числа Стантона от  , рад 

 
Как уже отмечалось выше, в работе [2] было показано, что исполь-

зование метода эффективной длины сопряжено с внесением опреде-
ленного завышения в интенсивности конвективного теплообмена на 
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полусфере по сравнению с экспериментальными данными [11, 12]. В 
этой связи, представляется вполне естественным указанное различие 
между представленными на рисунке 1 данными, полученными мето-
дом эффективной длины и в результате численного интегрирования 
уравнений пограничного слоя. 

В то же время для проведения прикладных исследований важным 
представляется разработка инженерного подхода к аппроксимации ре-
зультатов, полученных при систематическом численном интегрирова-
нии уравнений пограничного слоя, который был бы столь же эффек-
тивным, как и формулы (3), (2) для метода эффективной длины. 

В работах [13, 14] был предложен подход к описанию теплооб-
мена в ламинарно-турбулентном пограничном слое, основанный на 
выделении из суммарной тепловой нагрузки той его части, которая 
обусловлена турбулентными пульсациями в газе. 

Следуя этому подходу, введем функции вида 

 
     
     

,

, , , ,

St St St ,

St St St .

im im im L

f im f im f im L

  

  

  

  
  

Здесь St im  и ,St f im  — известные числа Стантона для случая ламинар-

ного режима течения газа в пограничном слое. 
По аналогии с работой [1] применяется процедура оптимальной 

аппроксимации результатов систематических исследований, выпол-
ненных при численном интегрировании уравнений пограничного 

слоя, по отношению к максимальным значениям *Stim  и *
,St f im  функ-

ций  Stim   и  ,St f im  . 

Результаты такой аппроксимационной процедуры, полученной в 
рамках предписания метода наименьших квадратов [15] с использова-
нием одного из вариантов эвристического метода прямого поиска 
Хука – Дживса [16], имеют вид 

  1,86* * 0,066 0,246
, St Re 1 0, 0071 M ;H im im hR           (4) 

  2,23* * 0,066 0,24
, ,St Re 1 0,0076 M .Fr im f im hR           (5) 

Сопоставление результатов применения этих формул с результа-
тами численного интегрирования уравнений пограничного слоя иллю-
стрируется рис. 3, на котором кружками, линиями и крестиками нане-
сены соответственно результаты численного и аппроксимационного 
расчета, а также относительная погрешность    последнего из них. 
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а 

 

б 

Рис. 3. Зависимость максимальных значений критериев теплообмена и трения на 
полусфере от числа Маха в набегающем потоке воздуха: 

а — *
,H im ,  , %; б — *

,Fr im ,  , % 

 
Так же, как и для метода эффективной длины, распределение чи-

сел Стантона по поверхности полусферы будем характеризовать функ-
циями вида  
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     *St / Stim im im       

и 

     *
, , ,St / St .f im f im f im       

Аппроксимационные формулы для этих функций, полученные так 
же, как и формулы (4), (5), имеют вид 

    

 2

2 3
*

2 3

1,461 1 , 0,32

St
1 2,68 0,595 , 0,32, ,

4St

1 1,82 1,08 ,
4

im
im

im

 
    

  


   


              


    

  (6) 

 
   

 2

, 2 3
, *

,

2 3

1,582 1 , 0,39

St
1 2,94 1,06 , 0,39, ,

4St

1 1,77 1.07 ,
4

4 / 1.

f im
f im

f im

 
    

  

  


   
              


    
  

  (7) 

Сопоставление результатов применения формул (6), (7) с резуль-
татами численного интегрирования уравнений пограничного слоя ил-
люстрируется рис. 4 с той же системой обозначений, что и на рис. 3. 

Здесь исключены из анализа погрешностей значения функций 

 im   и  ,f im   на областях их определения  [0; 0,32] и                        

[0; 0,39] соответственно. В этих условиях применение формул (4) – (7) 
характеризуется среднеквадратическими и максимальными погреш-
ностями, меньшими соответственно 7 и 30 %, что, естественно, при-
емлемо для большинства практических приложений. 

К числу наименее изученных вопросов теории ламинарно-турбу-
лентного теплообмена и трения относится проблема расчета степени 
их блокировки вдувом газа через поверхность тела, обтекаемой вязким 
и теплопроводным газом. Данная проблема в первую очередь является 
актуальной для изделий ракетно-космической техники, так как эксплу-
атация большинства используемых в ней теплозащитных материалов 
сопровождается вдувом газа в ламинарно-турбулентный пограничный 
слой. 
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б 

Рис. 4 Зависимость относительного числа Стантона от центрального угла полу-
сферы: 

а — im ,  , %; б — ,f im ,  , % 

 
Экспериментальному изучению этой проблемы уделялось внима-

ние только во второй половине прошлого века, а результаты относи-
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лись только к теплообмену и характеризовались значительным разбро-
сом. Литературные рекомендации по этому вопросу обобщены в ра-
боте [1] в форме, изображенной на рис. 5. 

 

Рис. 5. Литературные данные по степени блокировки теплового потока  вдувом 
газа: 

1,2 — формула (8) из работы [15] для турбулентного теплообмена; 3 — формула (9) из ра-
боты [16] для турбулентного теплообмена;  4  — формула (10) из работы [1] для ламинар-

ного теплообмена; 5  — настоящие расчеты 

 
Здесь   — отношение удельных тепловых потоков на проницае-

мой и непроницаемой стенке; wG  — массовая скорость вдува газа в 

пограничный слой, измеренная в долях от коэффициента теплообмена 
на непроницаемой стенке, а формулы из работ [17, 18, 1] имеют вид 

 
0,35

w1 0,19 ;M G      (8) 

 2
w w1 0,25 0,5 ;G G        (9) 

 2
w w1 0,68 0,06 .G G        (10) 

При этом данные работы [14], аппроксимированные автором с 

учетом отношения M  молекулярных масс внешнего потока и вдувае-
мого газа, нанесены в виде дорожки, ограниченной кривыми 1 и 2, ко-
торые соответствуют значениям 1 и 0,5 этого отношения. 

В свою очередь, отрезками вертикальных линий на рис. 5 нанесен 
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разброс результатов численных расчетов, полученных в рамках изло-
женной ниже методики. 

Ограничение величины wG  на рисунке обусловлено тем обстоя-

тельством, что большие значения этого параметра не реализуются в 
задачах абляции тепловой защиты, а задачи так называемого «боль-
шого вдува» не представляют в настоящее время практического инте-
реса. 

Из данных, приведенных на рис. 5, однозначно следует вывод о 
неправомочности использования на практике однозначной зависимо-
сти  wG  . 

В то же время в литературе не уделено должного внимания реше-
нию данной задачи на базе численного решения уравнений погранич-
ного слоя или уравнений Навье – Стокса, которые апробированы на 
экспериментальных данных, полученных на непроницаемой стенке 
[1]. 

Первая попытка в этом направлении была предпринята в работе 
[19], в которой было предложено рассматривать эффект блокировки 
теплового потока отдельно для его ламинарной и турбулентной со-
ставляющей. В свою очередь, для расчета этого эффекта здесь были 
предложены аппроксимационные формулы, зависящие только от па-
раметров газа в набегающем потоке. 

Если первое из указанных предположений представляется разум-
ным, то этого же нельзя сказать о втором из них, так как каждая точка 
полусферы характеризуется различным вкладом турбулентных пуль-
саций в суммарный тепловой поток. 

В частности, в работе [20] было показано, что для газовых пото-
ков, обладающих умеренным вкладом T  турбулентных пульсаций в 

суммарную тепловую нагрузку на непроницаемой поверхности полу-
сферы, эффект блокировки теплообмена, обусловленный турбулент-
ными пульсациями, при фиксированной скорости вдува газа практи-
чески полностью определяется величиной этого вклада. 

Приведенные ниже материалы посвящены вопросу более каче-
ственного и объемного решения данной задачи на базе проведения 
численного интегрирования дифференциальных уравнений погранич-
ного слоя. 

При этом исследования выполнены с выделением вклада, вноси-
мого в теплообмен и трение турбулентными пульсациями газа в погра-
ничном слое, и без учета ограничений на величину этого вклада   и 

f  для непроницаемой стенки, имеющего вид. 

    , , , , ,St St / St ; St St / St .im im L im f f im f im L f im       
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Предлагаемая система построения оптимальных аппроксимацион-
ных зависимостей, предназначенных для расчета эффекта блокировки 
теплообмена и трения на стенке вдувом воздуха в ламинарно-турбу-
лентный пограничный слой, основана на том, что известна вся инфор-
мация, относящаяся к непроницаемой стенке, а также аналогичные 
данные по проницаемой стенке при ламинарном режиме течения газа 
в пограничном слое. 

Таким образом, использованию приведенных ниже результатов 
исследований должен предшествовать расчет функций    ,  f  , 

 Stim  ,  ,St f im  ,  St ,L wG  и  ,St ,f L wG  для условий проведе-

ния конкретного прикладного расчета. 

Введем в рассмотрение функции  , wG  и  ,f f wG , ха-

рактеризующие относительный вклад турбулентных пульсаций в 
числа Стантона, вида  

 

     
 

     
 

,

St St
, ,

St

St St
, .

St

L w
w

f f f L w
f f w

f f

G
G

G
G












 


 

  

Аппроксимация результатов систематического численного инте-
грирования дифференциальных уравнений пограничного слоя, соот-
ветствующих ряду фиксированных значений скорости вдува, записы-
вается в виде 

 

6

, 6
, , .

0,25

1,6

i

f i

i i

f i f i Fr

wG i

i




 

 





   

  


 
 

  (11) 

При этом оптимальные значения аппроксимационных коэффици-
ентов i  и ,f i , полученные в рамках предписания метода наименьших 

квадратов [15] с использованием одного из вариантов эвристического 
метода прямого поиска Хука – Дживса [14], а также погрешности, со-
ответствующие применению формул (11), указаны в табл. 2.  

В свою очередь, на непроницаемой стенке  

     
       

 
, , ,,

,
,

St StSt St
, .

St St
f im f L imim L im

im f im
im f im

  
 

 


     



Моделирование теплообмена и трения в тонком воздушном… 

63 

Таблица 2 

Оптимальные значения аппроксимационных коэффициентов 
 в формулах (11) и погрешности применения последних 

i  1 2 3 4 5 6 

wG  0,25 0,5 0,75 1,0 1,25 1,5 

i  0,890 0,791 0,691 0,590 0,495 0,392 

6i   0,975 0,956 0,918 0,862 0,799 0,690 

,%  1,2 2,6 4,6 7,2 10,6 15,4 

max ,%  5,8 11,2 20,2 33,0 52,6 81,7 

i  1 2 3 4 5 6 

,f i  0,896 0,789 0,683 0,570 0,457 0,304 

, 6f i   1,006 1,010 1,009 0,989 0,964 0,742 

,%f  2,0 4,5 7,7 11,8 17,2 24,7 

,max ,%f  6,2 10,7 18,1 29,3 52,3 91,1 

 
Результаты данных систематических численных исследований по 

суммарному эффекту блокировки удельного теплового потока вдувом 
газа, как уже отмечалось выше, приведены на рис. 5. 

Из анализа этой информации следует, что практически все резуль-
таты проведенных нами исследований располагаются практически 
строго между литературными данными, соответствующими ламинар-
ному и турбулентному режимам течения газа в пограничном слое из 
работ [1,18], т.е. в коридоре между кривыми, построенными по фор-
мулам (10) и (9). 

Это, в свою очередь, свидетельствует: 
 о не противоречии результатов проведенных исследований ли-

тературным данным; 
 о том, что результаты, относящиеся к максимальному вкладу 

турбулентных пульсаций в теплообмен, с высокой точностью аппрок-
симируются формулой (9), приведенной в работе [18]. 

В то же время, обоснованность использования для полусферы 
формулы (8) из работы [17] вызывает большие сомнения. 

Выводы. Предложена методика инженерного моделирования теп-
лообмена и трения на полусфере, основанная на оптимальной аппрок-
симации результатов систематических численных решений уравнений 
ламинарно-турбулентного пограничного слоя. 

1. Сформулирован новый инженерный метод расчета конвектив-
ного теплообмена в ламинарно-турбулентном пограничном слое над 
поверхностью полусферы, основанный на анализе экспериментальных 
данных, полученных при экстремально больших числах Рейнольдса и 
на выделении из параметров теплообмен и трения их составляющих, 
обусловленных турбулентными пульсациями в газе. 
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2. Метод апробирован на результатах систематического числен-
ного интегрирования дифференциальных уравнений пограничного 
слоя и характеризуется столь низким уровнем погрешности, что де-
лает обоснованным его применение для большинства практических 
приложений. 
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Spherical aircraft elements are related to a number of their fragments influ-enced by the 
maximum heat fluxes. As a result calculating thermal and force loading of a hemisphere is 
of particular interest. This problem is one of the most acute within the extremely high 
Reynolds numbers that correspond to laminar-turbulent gas flow in a boundary layer over 
a hemisphere. At the same time, the fundamental monograph [1] on the aircraft convective 
heat exchange, which summarizes the results of many years of research on this problem, 
doesn’t pay proper attention to this issue. At the same time, the work [2] shows that using 
the approaches for a hemisphere outlined in the monograph [1] is associated with a num-
ber of significant errors within the range of extremely high Reynolds numbers. Calculating 
heat transfer and friction on the porous wall which correct solution has been missing by 



В.В. Горский, А.Г. Локтионова 

66 

now is one of the least studied problems of laminar-turbulent heat exchange. The purpose 
of this article is to develop a highly accurate engineering method for calculating heat 
transfer and friction in a laminar-turbulent boundary layer on a hemisphere. 
 
Keywords: boundary layer, heat transfer, friction, turbulence 
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