696.11 Numerical simulation of flow in a centrifugal separator based on SA and SARC models

Madaliev M. E. (Institute of Mechanics and Seismic Stability of Structures named after M.T.Urazbaev of the Academy of Sciences of the Republic of Uzbekistan)

SPALART ALLMARES, CENTRIFUGAL AIR SEPARATOR, REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS, CURRENT FUNCTION, VORTICITY, ITERATION, CORRECTION OF ROTATION, EDDY VISCOSITY, SWEEP, UPPER RELAXATION.


doi: 10.18698/2309-3684-2019-2-3550


The results of mathematical modeling of two-phase swirling turbulent flow in the separation zone of a centrifugal apparatus are presented. The motion of the carrier gas flow was modeled using the averaged Navier – Stokes equations, for closure of which the well-known Spalart Allmares SA turbulence model was used and Schur and Spalart proposed an amendment to the Spalart-Allmaras SARC model. Based on the field obtained, the averaged velocities of the carrier medium, taking into account turbulent diffusion.


[1] Spalart P.R., Shur M.L. On the sensitization of turbulence models to rotational and curvature. Aerospace Science and Technology, 1997, vol. 1, no. 5, pp. 297–302.
[2] Steenbergen W. Turbulent pipe flow with swirl. Eindhoven University of Technology, PhD Thesis, 1995, 199 p.
[3] Bradshaw P., Ferriss D.H., Atwell N.P. Calculation of boundary-layer development using the turbulent energy equation. Journal of Fluid Mechanics, 1967, vol. 28, iss. 3, pp. 593–616.
[4] Shur M.L., Strelets M.K., Travin A.K., Spalart P.R. Turbulence modeling in rotating and curved channels: assessing the Spalart-Shur correction. AIAA Journal, 2000, vol. 38, no. 5, pp. 784–792.
[5] Launder B.E., Spalding D.B. Lectures in mathematical models of turbulence. London, Academic Press, 1972, 169 p.
[6] Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flow. La Recherche Aerospatiale, 1994, no. 1, pp. 5–21.
[7] Mises R.V. Remarks on hydrodynamics. ZAMM — Journal Of Applied Mathematics And Mechanics, 1927, vol. 7, pp. 425–431.
[8] Boussinesq J. Essai sur la theorie des eaux courantes. Paris, Memoires presentes par divers savants a l’Academie des Sciences de l’Institut National de France, 1877, 680 p.
[9] Kolmogorov A.N. Doklady AN SSSR (Proceedings of the USSR Academy of Scien-
ces), 1941, vol. 30, no. 4, pp. 299–303.
[10] Prandtl L. Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM — Journal Of Applied Mathematics And Mechanics, 1925, vol. 5, iss. 2, pp. 136–139.
[11] Karman T.V. Mechanische Ahnlichkeit und Turbulenz. Nach. Ges. Wiss. Gottingen Math-Phys. Klasse, 1930, no. 58, pp. 271–286.
[12] Patankar S.V. Numerical Heat Transfer and Fluid Flow. Boca Raton, CRC Press, 1980, 214 p.
[13] Gupta A.K., Lilley D.G., Syred N. Swirl Flows.Tunbridge Wells, Kent, England, Abacus Press, 1984, 488 p.
[14] Muntean S., Bosioc A.I., Szakal R.A., Borbath I., Vekas L., Susan-Resiga R.F. Нydrodynamic investigation in a swirl generator using a magneto-rheological brake. 1st International Conference on Materials Design and Applications, Porto, Advanced Structured Materials, vol. 65, pp. 209–218.
[15] Okulov V.L., Sorensen J.N. Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. Journal of Fluid Mechanics, 2010, vol. 649, pp. 497–508.
[16] Syred N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sc., 2006, vol. 32, no. 2, pp. 93–161.
[17] Derksen J.J. Separation performance predictions of a Stairmand high-efficiency cyclone. AIChEJ, 2003, vol. 49, no. 6, pp. 1359–1371.
[18] Alexandrov A.A., Dimitrienko Yu.I. Matematicheskoe modelirovanie i chislennye metody — Mathematical modeling and Computational Methods, 2014, no. 1, pp. 3–4.


Мадалиев М.Э. Численное моделирование течения в центробежном сепараторе на основе моделей SA и SARC. Математическое моделирование и численные методы, 2019, № 2, с. 35–50.



Download article

Количество скачиваний: 346