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Представлены результаты математического моделирования двухфазного закру-
ченного турбулентного течения в сепарационной зоне центробежного аппарата. 
Движение несущего потока газа моделировалось с помощью осредненных уравнений 
Навье–Стокса, для замыкания которых использовалась известная модель турбу-
лентности Спаларта–Аллмареса (SA) и Шуром и Спалартом была предложена по-
правка к модели Спаларта-Аллмараса (SARC). На основе полученного поля осреднен-
ных скоростей несущей среды с учетом турбулентной диффузии 
 
Ключевые слова: Спаларта–Аллмарес, центробежный воздушный сепаратор, 
осредненные по Рейнольдсу уравнения Навье–Стокса, функция тока, завихрен-
ность, итерации, коррекцией вращения, вихревой вязкости, прогонки, верхней релак-
сации 
 

Введение. Современные технологии с каждым годом усложня-
ются. Принципиально новые проектные, конструкторские  и  техноло-
гические разработки в технике (автомобилестроении, авиации, ракето- 
и судостроении,  энергетике  и  энергомашиностроении,  приборостро-
ении  и электронике)  в  настоящее  время  являются  результатом  
труда  больших  коллективов,  использующих  в  своей  деятельности  
огромный опыт предшествующих поколений исследователей.  В этих 
условиях поиск оптимальных инженерных решений при создании  но-
вых  образцов  техники  невозможен  без  применения  мощных  вы-
числительных  средств,  включая  суперкомпьютеры.  Однако сама по 
себе вычислительная техника  — это только  «железо», хотя  и облада-
ющее уже элементами искусственного интеллекта. Для того чтобы с 
ее помощью решать конкретные задачи, необходимо разработать ма-
тематические модели физических процессов и явлений, численные ме-
тоды решения математических задач, создать алгоритмы решения этих 
задач на современных компьютерах, в том числе на суперкомпьюте-
рах, а также разработать соответствующее программное обеспечение 
[18]. 

В современных процессах нередко встречаются закрученные по-
токи газов и жидкостей [13]. Закрученные течений формируются за 
колесами гидротурбин ГЭС [14], в следе самолетных и гребных вин-
тов, а также ветрогенераторов и пр. [15]. Циклоны, сепараторы, вихре-
вые расходомеры — во всех этих устройствах используется закрутка 
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потока рабочей среды. Полезные свойства закрученных течений ши-
роко применяются в теплоэнергетике, например, с помощью нее доби-
ваются стабилизации пламень в горелочных устройствах. Однако за-
крученные течения имеют не только положительные особенности. В 
сильно закрученных потоках часто происходит формирование неста-
ционарных структур, таких как прецессирующее вихревое ядро 
(ПВЯ). Низкие частоты прецессии вихревого ядра, образующегося, к 
примеру, за колесом гидротурбины ГЭС, могут привести к резонансу 
с собственными частотами гидроагрегата, что в свою очередь повлечет 
за собой сильные вибрации, представляющие серьезную опасность 
для всей конструкции ГЭС. Образование ПВЯ в вихревых камерах сго-
рания может быть причиной термоакустического резонанса [16], след-
ствием чего также являются сильные вибрации и шум. Кроме того, 
было установлено, что ПВЯ может влиять на эффективность работы 
вихревых аппаратов [17].  

Крупномасштабные пульсации, вызванные прецессией вихря, мо-
гут привести к повреждению конструкций и снижению надежности 
оборудования. Несмотря на многолетние исследования данного явле-
ния, на настоящий момент нет достаточной информации для построе-
ния теории ПВЯ и, соответственно, для разработки эффективных ме-
тодов управления данным явлением. Таким образом, для инженерных 
расчетов требуются модели турбулентности, достаточно точно описы-
вающие усредненные поля и крупномасштабные пульсации закручен-
ных течений. 

В настоящей работе проводится исследование однофазного турбу-
лентного потока в центробежном сепараторе и представлен сравни-
тельный анализ турбулентной модели Спаларта–Аллмареса с одним 
уравнением (SA) и с коррекцией вращения (SARC) [1].  

Физическая и математическая постановки задачи. Известно, 
что закрученные потоки характеризуются сильной искривленностью 
линий тока, возникновением рециркуляционных зон, расположение и 
размеры которых в значительной мере зависят от интенсивности 
крутки и конфигурации границ. Кроме этого такие потоки являются 
турбулентным. Поэтому для их исследования требуется привлечения 
эффективных моделей турбулентности. В последнее время появились 
достаточно эффективные модели турбулентности. В дальнейшем эти 
методы модифицированы и для турбулентных потоков с небольшой 
закруткой [1].  Однако проверка этих моделей для сильно закрученных 
потоков показало, что их точность недостаточна, и эти модели для вра-
щающихся потоков не имеют преимущества по сравнению с другими. 
Поэтому в настоящей работе для численного исследования потока в 
сепараторе используется хорошо проверенная на практике Спаларта– 
Аллмареса (SA) и модификация М.Л. Шура (SARC).  
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 В настоящей работе рассматри-
вается трехмерное турбулентное те-
чение в воздушно-центробежном се-
параторе, который представляет со-
бой важное звено в процессах сепа-
рации и классификации частиц, по-
лучении порошков требуемого каче-
ства. От того, как организована 
структура потока внутри рабочей 
области, будет зависеть эффектив-
ность происходящих процессов по 
разделению порошков на крупную и 
мелкую фракции. Целью предпри-
нимаемого численного исследова-
ния является выяснение характера 
гидродинамики закрученного по-
тока при разных геометриях. Схема 
рассчитываемой области показана 
на (рис.1). Центробежный воздушно 

сепаратор работает следующим образом. Исходный материал вместе с 
первичным воздухом подается через патрубок в верхнюю часть сепа-
ратора. С помощью управляемыми лопатами потоку воздуха прида-
ется вращательное движение. Под действием центробежной силы 
инерции частицы движутся к цилиндрической стенке корпуса сепара-
тора и попадают в зону классификации, расположенную между кону-
сами и стенки (см. рис. 1). Крупные частицы вследствие своей боль-
шей массы под действием центробежной силы накапливаются около 
внутренней стенки корпуса сепаратора и по инерции попадают в бун-
кер сепаратора. А мелкие частицы увлекаются воздухом и выносятся 
из сепаратора через выходной патрубок. Таким образом, исходный ма-
териал разделяется на две фракции. Несложно понять, что эффектив-
ность такого сепаратора сильно зависит от его геометрии. Поэтому для 
поиска оптимальных геометрических параметров возникает задача мо-
делирования кинематики частиц внутри установки. Ясно, что кинема-
тика частиц зависит от динамики потока воздуха. Поэтому здесь воз-
никает две задачи: 1) исследование динамики воздушного потока; 2) 
на основе полученных гидродинамических параметров воздушного 
потока исследование траекторий сепарируемых частиц.  

Моделирование трехмерных течений газа связано с известными 
практическими трудностями: использование разнесенных сеток, мед-
ленная сходимость численного алгоритма решения, достаточно слож-
ная реализация расчетного алгоритма. Решение турбулентной задачи 

Рис. 1. Схема рассчитываемого 
воздушно-центробежного сепара-

тора 
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требует также сгущения расчетной стеки в областях с большими гра-
диентами искомых переменных, а также вблизи твердых стенок. Все 
эти проблемы значительно осложняют физико-математическую поста-
новку задачи в рассматриваемой области. 

Для численного исследования поставленной задачи используется 
система уравнений осредненные по Рейнольдсу уравнения Навье-
Стокса в цилиндрической системе координат: 
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где турбулентные напряжения определяются из соотношения  
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здесь ν, νt  — молекулярная и турбулентная вязкость. Начальные и гра-
ничные условия для системы уравнений (1) ставятся стандартным об-
разом [3]. 

Система (1) является незамкнутой. Для замыкания полученной си-
стемы уравнений предложено большое количество различных матема-
тических моделей. Эти модели основаны на гипотезах Буссинеска [8], 
Колмогорова [9], на теориях Прандтля [10], Кармана [11] и т.д. В ра-
боте для замыкания уравнений Рейнольдса использованы турбулент-
ные модели SA и SARC.   

Модель Спаларта-Аллмараса [6]. Эта модель относится к классу 
однопараметрических моделей турбулентности. Здесь появляется 
только одно дополнительное уравнение для расчета кинематического 
коэффициента вихревой вязкости  
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Турбулентная вихревая вязкость вычисляется из: 

 1.t vf     (3) 

Модель SARC такая же, как и для «стандартной» версии (SA), за 
исключением того, что термин Pv умножается на функцию вращения 
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fr1 см в [1,4]. Остальные величины остаются такими же, как для «стан-
дартной» модели, которые представлены в [1]. 

Для численной реализации системы (1)  проведена частичная 
параболизация, т.е. в правых частях пренебрегается члены с 
производными по z. Вводится переменные Мизеса [7] функция тока ψ, 
для которой удовлетворяются условие неразрывности  
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Далее из первых двух уравнений системы (1) исключим давление 
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Данная система подчинена следующим краевым условиям: 
при 2

20 : (1 ) / 2, ;z r G W r      

на стенке: 2
2(1 ) / 2, 0;r G     

при 0 : 0, 0.r G    
Область течения схематично показана на рис. 2. 
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Рис. 2.  Область течения в сепараторе в безразмерных координатах, где 
R — большой радиус кольцевого канала, следовательно, поверхность конуса 

соответствует 1  ; 1r  — радиус внутреннего цилиндра первого участка;  

3 4,r r  — радиус внутреннего цилиндра третьего и четвёртого участков 

 
Для численной реализации системы (6) проведено преобразование 

поперечной координаты. 
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Здесь  zF1  — функция внешнего цилиндра,    zFzF 32 ,  — функ-

ции внутреннего цилиндра и конуса; 0 0, 6    

Переход к новым координатам ),(   приводит к одинаковым 
уравнениям относительно неизвестных в четырёх участках течения: 
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 (7) 

На системы уравнение (7)  zF  — функция который зависит от 
расчётного участка 
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где L  — длина участки расчётного области,   — производная пер-
вого порядка по r,   — производная второго порядка по r.   

Таким образом, новые переменные позволяют привести все урав-
нения системы к параболическому виду и данную систему можно за-
писать в векторном виде 
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В этом уравнении: 

 
 

 

 

 

2 2

2 2

2

2

1 '

, ,

( )

( )
.

( )

b

v

eff

V G G
F z V

r Lr r
Ф G

C v
Pv Dv F z

r
a

r v v F z

    


 







   
                          

 
  

  





 

Для численной реализации  , G  и v  из уравнения (8) была ис-
пользована неявная схема против потока. 

Схема против потока имеет вид 
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Для численной реализации ψ из уравнения (8) была использована 
метод итерации, а этого уравнение равно этому 
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Данная схема является абсолютно устойчивой и неизвестные на 
новом слое находились методом прогонки. Шаги интегрирования 
были 0,05  , 0,02  . Число расчетных точек в поперечном 
направлении было 50, продольным направлении было 100. Для задачи 
ставились следующие граничные условия: на стенке, т.е. все скорости 

будет ноль, а на осы 0


r

для U  , W ,  v  и 0V  . Для старта ра-

счета ставились значения 3 Re   для числа Рейнольдса Re 10000.  
Для обеспечения устойчивости при численном решении системы 

(9) использовалась разностная схема против потока, а диффузионные 
члены аппроксимировались центральной разностью [12]. Уравнение 
Пуассона для функции тока также аппроксимировалось центральной 
разностью и для его разрешения использовался метод итерации 
верхней релаксации [12]. Начальные и граничные условия для 
уравнение (2, 3, 6) ставятся стандартным образом [1, 2, 3]. 

Обсуждение результатов. На рис. 3 иллюстрируются профили 
скоростей воздуха в сечении 0,6  . Здесь refU U , refV V , refW W  —     

безразмерные скорости. Здесь 2ref refW U  . 
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Рис. 3. Профили скоростей потока воздуха в сечении 0,6  : 

 а  — аксиальной; б — радиальной; в — тангенциальной  

 
На рис. 4 иллюстрируются профили скоростей воздуха в сечении 
0,7  . Здесь , ,ref ref refU U V V W W  — безразмерные скорости. 
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Здесь 2ref refW U  . 

 
а 

 
б 

 
в 

Рис. 4. Профили скоростей потока воздуха в сечении 0,7  : 

 а  — аксиальной; б — радиальной; в — тангенциальной  



Численное моделирование течения в центробежном…  

47 

На рис. 5 иллюстрируются линии тока воздуха. 

 

Рис. 5. Линии тока воздуха: 
 а  — SA ; б — SARC  

 
Выводы. Разработана математическая модель расчета гидродина-

мики закрученного турбулентного течения, возникающего в воз-
душно-центробежном сепараторе. Выявлены основные закономерно-
сти такого течения и показано, что геометрических параметров оказы-
вает существенное влияние на аэродинамику в сепарационной зоне 
центробежного аппарата. Представленная математическая модель поз-
воляет не только изучить сложную картину закрученного турбулент-
ного течения, что способствует разработке новых перспективных спо-
собов классификации порошков, но и оптимизировать режимные и 
геометрические параметры существующих установок. 

Из представленных рисунков видно, что численные результаты 
моделей SA и SARC довольно существенно различаются. Однако в ра-
ботах [1, 4] отмечается, что для закрученных потоков модель SARC 
дает более близкие результаты к экспериментальным данным. По-
этому можно полагать что турбулентная модель SARC больше подхо-
дит для описания процессов происходящие внутри центробежных ап-
паратов. 
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The results of mathematical modeling of two-phase swirling turbulent flow in the 
separation zone of a centrifugal apparatus are presented. The motion of the carrier gas 
flow was modeled using the averaged Navier – Stokes equations, for closure of which the 
well-known Spalart Allmares SA turbulence model was used and Schur and Spalart 
proposed an amendment to the Spalart-Allmaras SARC model. Based on the field obtained, 
the averaged velocities of the carrier medium, taking into account turbulent diffusion. 
 
Keywords: Spalart Allmares, centrifugal air separator, Reynolds-averaged Navier-Stokes 
equations, current function, vorticity, iteration, correction of rotation, eddy viscosity, 
sweep, upper relaxation. 
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