629.7.015.4 Modeling of stressed-deformed state of rotation shells under conditions of material creep

Butina T. A. (Bauman Moscow State Technical University), Dubrovin V. M. (Bauman Moscow State Technical University)

STRESS-STRAIN STATE, AXISYMMETRIC LOADING, CREEP SHELL ROTATION, MATERIAL FATIGUE, DEFORMATION, VOLTAGES


doi: 10.18698/2309-3684-2019-2-314


One of the main properties of structural materials is creep. The prob-lem of determining the stress-strain state of axisymmetrically loaded shells of rotation at creep is considered


[1] Kachanov L.M. Teoriya polzuchesti [Creep theory]. Moscow, Fizmatlit Publ., 1960, 455 p.
[2] Dimitrienko Yu.I. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Universal laws of mechanics and electrodynamics of continuum]. Vol. 2. Moscow, BMSTU Publ., 2011, 559 p.
[3] Grigolyuk E.I., Lipovtsev Yu.V. Stability of shells in creep. Journal of Applied Mechanics and Technical Physics, 1965, vol. 6, iss. 4, pp. 71–74.
[4] Dubrovin V.M., Butina T.A. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, no. 9 (21), 2013, pp. 131–139.
[5] Golushko S.K., Nemirovskiy Yu.V. Pryamye i obratnye zadachi mekhaniki uprugikh kompozitnykh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of elastic composite plates and rotary shells]. Moscow, FIZMATLIT Publ., 2008, 432 p.
[6] Pachurin G.V., Shevchenko S.M., Dubinskiy V.N., Vlasov O.V. Mikromekha-nizmy vysokotemperaturnoy ustalosti i polzuchesti metallov i splavov [Micromechanisms of metals and alloys high-temperature fatigue and creep]. Nizhny Novgorod, NNSTU Publ., 2006, 131 p.
[7] Volmir A.S. Ustoichivost deformiruemykh system [Stability of deformable systems]. Moscow, Nauka Publ., 1967, 984 p.
[8] Dimitrienko Yu.I., Sokolov A.P. Vestnik MGTU im. N.E. Baumana. Seriya Estestvennye nauki — Herald of Bauman Moscow State Technical University, Natural Science Series, 2008, no. 2, pp. 57–67.
[9] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Nonlinear continuum mechanics]. Moscow, Fizmatlit Publ., 2009, 624 p.
[10] Harlab V.D. Printsipialnye voprosy lineynoy teorii polzuchesti [The fundamental problems of the linear creep theory]. St. Petersburg, SPbGASU Publ., 2014, 207 p.
[11] Moskvichev V.V. Lektsii po mekhanike razrusheniya [Lectures on fracture mechanics]. Novosibirsk, SibFU Publ., 2007, 90 p.
[12] Zhilin P.A. Aktualnye problemy mekhaniki [Current problems of mechanics].
St. Petersburg, IPME RAS Publ., 2006, 306 p.
[13] Mushtari H.M., Galimov K.Z. Nelinejnaya teoriya uprugih obolochek [Nonlinear theory of elastic shells]. Kazan, Tatknigoizdat Publ., 1957, 431 p.
[14] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Chislennye metody [Numerical Methods]. Moscow, Binom Publ., 2001, 636 p.
[15] Frolov K.V. Izbrannye trudy. V 2 tomakh. Tom 2. Mashinovedenie i mashinostroenie [Selected Works. In 2 vols. Vol. 2. Theoretical and mechanical engineering]. Moscow, Nauka Publ., 2007, 523 p.


Бутина Т.А., Дубровин В.М. Моделирование напряженно-деформированного состояния оболочек вращения в условиях ползучести материала. Математическое моделирование и численные методы, 2019, № 2, с. 3–14.



Download article

Количество скачиваний: 543