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Одним из основных свойств конструкционных материалов является ползучесть. 

Рассматривается задача определения напряженно-деформированного состояния 

осесимметрично нагруженных оболочек вращения при ползучести. 
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нагружение, ползучесть оболочки вращения, усталость материала, деформации. 

напряжения 

 

Введение. Ползучесть, наряду с упругостью и пластичностью, яв-

ляется одним из основных свойств конструкционных материалов и за-

ключается в увеличении деформации в процессе эксплуатации кон-

струкции под действием даже постоянных нагрузок [1, 2]. Ползучесть 

проявляется и при небольших уровнях напряжений и нормальных тем-

пературах, но она, как правило, мала в течении всего времени эксплу-

атации конструкций и отбрасывается при расчетах. При повышении 

температуры и уровня напряжений в конструкциях ползучесть стано-

вится заметной, а иногда и решающей характеристикой в расчетах [4, 

3]. В работе рассматривается задача определения напряженно-дефор-

мированного состояния осесимметрично нагруженных оболочек вра-

щения при ползучести. Система разрешающих уравнений представ-

лена в виде, удобном для решения методом конечных разностей. 

Методика расчета. Рассматривается изотропная однослойная 

оболочка, образованная вращением некоторой кривой вокруг оси x  

(рис.1). Положение точки на поверхности оболочки определяется ор-

тогональными криволинейными координатами   и  , отсчитывае-

мыми соответственно в меридиональном и окружном направлениях. 

Координатные линии   и   являются линиями главных кривизн K  

и K  недеформированной поверхности. Геометрия оболочки задается 

коэффициентами Ляме A  и B , радиусами кривизны 
1

R
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



  и 

1
R

K




 , толщиной  h  , начальным 
0  и конечным K  значениями 

координаты  . 
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Оболочка может быть нагрета осесимметрично (неравномерно по 

толщине и образующей) и нагружена осесимметричными усилиями. 

Кроме того, температурное поле и внешние нагрузки могут меняться 

со временем. Если температурный нагрев и уровень напряженного со-

стояния значительны, то в оболочке наряду с упругопластическими 

деформациями со временем возникают деформации ползучести. 

Свойства материала характеризуются, например, набором 

N K M   диаграмм       ,
, ,

i j i j
T t    1,2... , 1,2...i K j M    зависи-

мости полной деформации   от времени t  при постоянных значениях 

напряжения   и температуры T . При этом напряжение и температура 

должны меняться с достаточно малыми шагами    
1i i   , 

1j jT T T    и в широких пределах из-за сильной нелинейности зави-

симости  , ,T t  . При выборе конкретного метода решения и «тео-

рии ползучести» указанные диаграммы перестраиваются в изохрон-

ные кривые, кривые «мгновенного» деформирования, диаграммы для 

скоростей ползучести и др. 

Следует также задавать коэффициент температурного расшире-

ния T  и коэффициент Пуассона 
p . 

При определении напряженно-деформированного состояния обо-

лочки вращения в условиях ползучести использовались два различных 

подхода на основе деформационной теории ползучести. 

В первом подходе полная деформация представляется в виде 

суммы упругопластической деформации, температурного расширения 

и деформации ползучести. Упруго-пластические деформации и соот-

ветствующие им напряжения определялись по кривым мгновенного 

деформирования методом переменных параметров упругости. По 

найденному напряженно-деформированному состоянию отдельно 

определялись деформации ползучести, использовались соотношения 

различных теорий ползучести. Деформации ползучести считались 

«пассивными» в том смысле, что собственно их изменение не влияет 

непосредственно на напряженное состояние оболочки, но приводит к 

изменению формы оболочки, из-за чего даже при постоянных внеш-

них воздействиях может происходить перераспределение напряжений 

и упругопластических деформаций. 

При втором подходе общие кривые ползучести перестраиваются в 

изохронные кривые и по ним методом переменных параметров сразу 

определяется сумма упругопластических деформаций и деформаций 

ползучести в искомый момент времени. 

Ниже приводится вывод разрешающих уравнений для первого 

подхода, поясняется отличие в постановке и применении второго ме-

тода. 
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Рассмотрим связь усилий c деформациями с учетом разгрузки. По 

гипотезе Кирхгофа-Лява о неизменяемости нормали к срединной по-

верхности, деформации в слое, расположенном на расстоянии z от сре-

диной поверхности, представляется в виде: 

  ,  ,  0.e zx e           (1) 

Здесь ,, ,x x      ⸺ полные деформации и измерения кривизн в 

срединной поверхности оболочки, которые для осесимметричного 

случая нагружения согласно Х.М. Муштари [12] записываются следу-

ющим образом: 

 

 
 

21
,

2

  ,  ,  ,

1
,  ,

,
w w

u u
R R

x x w

d B

A d B

 

 

 

   

  




 



   

  

 




   (2) 

где ,u w  ⸺ перемещения точек срединной поверхности, положитель-

ные направления которых указаны на рис.1, B  ⸺ функция времени 

 

Рис. 1. Схема перемещения точек срединной 

поверхности для оболочки вращения 

 

Полные деформации в любом слое оболочки можно представить в 

виде: 

     ,ep c Te e e e           (3) 



Т.А. Бутина, В.М. Дубровин 

6 

где epe  ⸺ упруго-пластическая часть полной деформации; ce  ⸺ де-

формация ползучести; Te  ⸺ деформация нагрева. 

Согласно деформационной теории термопластичности соотноше-

ние (3) можно представить в виде: 

    0

1
 c

T

c

e T e
E

              (4) 

Здесь 0 /c x xE    ⸺ секущий модуль при одноосном растяжении;

 
0

1
1 2 1

2

c
p

E

E
 

 
   

 
 ⸺ коэффициент поперечного сжатия матери-

ала; E  ⸺ модуль Юнга. 

При определении напряженно-деформированного состояния секу-

щий модуль 0

cE  находится из диаграммы мгновенного деформирова-

ния. Учет разгрузки осуществляется следующим образом. Пусть в не-

который момент времени t  в некоторой точке разбиения оболочки по 

толщине и по длине температура была 
1T , а мгновенный предел теку-

чести определялся точкой A  (см. рис. 2). 

 

Рис. 2. Диаграмма мгновенного деформирования 

 

В момент времени t t   при нахождении равновесного напря-

женно-деформированного состояния в той же точке оболочки будет 

рассматриваться уже не кривая OAC , а ломаная BAC . Если 

   At t t   , то точка     будет на прямой разгрузки, если 

   At t t    ⸺ то на кривой AC . При изменении температуры в 
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этой точке оболочки за время t  от T  к T   (см. ломанную B A C   ) (см. 

рис. 3). 

 

Рис. 3. Диаграммы мгновенного деформирования при изменении 

Температуры за время t  от T  к T    

 

Таким образом, при деформировании оболочки со временем ак-

тивное напряженно-деформированное состояние определяется с уче-

том истории нагружения в смысле учета накопленной деформации 

ползучести и накопленной пластической деформации, но не зависит от 

пути нагружения. При одноосном напряженно-деформированном со-

стоянии имеют место соотношения  

  
2

1 ,,
3

u x u xe e       

а при двухосном 

 

 
     

   

      
 

2 2
2

2

2

2 2 0

2
1

3 1

1 4

1 ,

2 1
,   .

3

c c

u

c c

c c

T

u
u c

u

e e e e e

e e e e

T e e e e T

E
e

   

   

   

   

 


 

  

 
    

       
  

     

      






  

  (5) 

Разрешая уравнения относительно напряжений, можно получить 

связь напряжений и деформаций в оболочке в некоторый момент вре-

мени: 
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 

     
0

2
1  

1

c cc
T

E
e e e e T         


    


  


  (6) 

Систему напряжений, распределенных по грани некоторого элемента 

оболочки, заменим равнодействующими усилиями T , T  и момен-

тами M , M  , приложенными к срединной поверхности. Используя 

соотношения (1), (6), получим 

 

1 2 3 4 1 1 2

1 3 4 1 3 4

3 4 5 6 2 5 6

3 4 5 6 2 7 8

,

,

,

,

T A А А x А x B C C

T А А x А x B C C

М А А А x А x В С С

М А А А x А x B C C

    

   

    

    

 



 

 

     

    

      

      


  (7) 

где коэффициенты имеют вид: 

 

   

1 2 3

2 2

4 5 6

1 2

 

1 2 3

4 5 6

7 8

, , ,

, , ,

1 , 1 ,

, , ,

, , ,

, ,

с с с

с с с

с с

с с с

с с с

с с с

с с с

с с

с с

А Е dz А Е dz А Е zdz

А Е zdz А Е z dz А Е z dz

B Е Tdz B Е Tzdz

C Е е dz C Е е dz C Е е dz

C Е е dz C Е е zdz C Е е zdz

C Е е zdz C Е е zdz Е

  

  

 



 

   



 



     
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с

Е
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  (8) 

Все интегралы берутся от 2h  до 2h , где h  ⸺ толщина оболочки. 

Ниже приводится разрешающая система уравнений, приведение 

ее к каноническому виду. Разрешающая система уравнений имеет вид: 

 

 

 

0,

0,

0,   ,

Т Т Т
A

ТТ
N N q

А R R

M M M Т N N Q Т
А

  


 

 

       






 

   

     

       

  (9) 

где q  ⸺ поперечная осесимметричная нагрузка; T  ⸺ растягивающая 

сила; Q  ⸺ перерезывающая сила. 

Для того, чтобы определить напряженно-деформированное состо-

яние оболочки, к (9) необходимо присоединить уравнения (1) и (2) для 
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получения замкнутой системы шести уравнений с шестью неизвест-

ными , , , , ,u w T N M   .  Из (1), (2), (7) путем несложных преобра-

зований получим: 

 
2

*1
1 2 0 3 4 1

1
,

2

adu
a u A w a A a Т a M A a C

d R R
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  
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где 

 

2 5 2 5 3 4 3 6 4 7
3 1 5 0 1 2

3 3 2 5 1 3 2 1 41
3 4 5 6

1 2 3 1,1 6 3 4
7 8 9 1 2 1 4 6

10 1 11 2 2 4 7 3 12 6

13 2 4 4 8 1 1

, ,  , , 

,    , ,   ,  

, ,    ,   

, , ,

,

A A A A A A A A A
A A A a a a

A A B A B A A A AA
a a a a

A B A BA A A A
a a a A A a A a

a a a A a A a A a a

a A a A a B a

 
      

  

 
   
   


    

 

     

  

       

4 3 4 1 6 6 15 2

16 4 2 6 7 5 17 7 18 4 4 6 8 2

* *

1 3 5 6 0 1 2 2 5 5 6 3 1 2

* * * * * *

3 2 1 4 2 3 4 4 4 1 6 2 7 8

,    ,

,

   

, 

,

,

  ,

, .

A A a A a a a

a A a A a A a a a A a A a B

C a C C a C C C a C C a C C

C A C A C C C C A C A C C C

   

       

       

       

  (11) 

Если ввести обозначения 
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1 2 3 4 5 6,   ,   ,   ,  ,  ,y u y w y y T y N y M         (12) 

то система уравнений (10) для осесимметрично нагруженной обо-

лочки вращения можно будет записать в общем виде: 

 ,  , 1,2, 6.i
ij j i

dy
A y B i j

d
      (13) 

Здесь ijA   ⸺  матрица коэффициентов однородной части; ijB  ⸺ стол-

бец неоднородных составляющих и нелинейных членов. 

Значения ijA  и ijB  легко определяются из (10). Для того, чтобы 

система (13) стала замкнутой, к ней необходимо присоединить шесть 

граничных условий: по три на каждом торце оболочки  

     
3

* *

3 3 31 0
ji i i i i i jy y y y j

          (14) 

1,2j  ; 1,2,3i  ; причем 0j   на левом краю 1j   на правом. 

Если нужно задать на краю оболочки кинематические граничные 

условия, то следует положить 1j  , если статистические, то 0j  . 

Направление внешних усилий T
 , Q

  и внешнего момента M

  совпа-

дают с направлениями внутренних силовых факторов, указанных на 

рис. 4. 

 

Рис. 4. Направление внутренних силовых факторов 

 

После того, как искомые неизвестные , , , , ,u w T N M    будут 

найдены из решения краевой задачи (13), (14), через них можно опре-

делить деформации  ,   по формулам (2) а также 

 

*

1 2 0 3 4 1

*

6 7 3 5 8 2

*

9 11 10 12 13 3

*

14 16 15 17 18 4

,

,

.

a a a T a M a C

a a a T a M a C

T a a a T a M a C

M a a a T a M a C

    

    

    

    

  

  

 

 



     

     

     

     

  (15) 



Моделирование напряженно-деформированного состояния оболочек… 

11 

Примеры расчета. Численное решение задачи [13] позволило ре-

ализовать данный метод и получить кривые изменения деформаций в 

условиях ползучести [14]. Рассматривалась цилиндрическая оболочка 

радиуса 100 см, выполненная из сплава Д16АТ, осесимметричная 

нагрузка составила 72 т. Плотность материала 2,35 3г см , модуль 

Юнга 7,2 2кг см , коэффициент Пуассона 0,3, предел прочности 420 

2кг см . Решение задачи иллюстрирует рис. 5. Полная деформация по-

стоянна и равна 20,34 10 , на рис. 5 она изображена кривой 1. Распре-

деление упруго-пластической деформации, полученной из точного ре-

шения, представлено кривой 2, а деформация ползучести кривой 3. Де-

формации  ep t  и  с t , полученные простым шаговым методом Эй-

лера, представляют кривые 2 , 3   соответственно. Решение, получен-

ное с использованием модифицированного метода Эйлера-Коши с 

итерациями, отличаются от точного в четвертом знаке. Шаг выбира-

ется автоматически из условия: относительное изменение решения на 

шаге не превышает  , в приведенных задачах   равнялось 5 процен-

там. 

 

Рис. 5. Кривые изменения деформаций в условиях ползучести: 

1  ⸺ полная деформация; 2 ⸺ упруго-пластическая деформация, точное решение; 2

⸺ упруго-пластическая деформация, простой шаговый метод Эйлера; 3  ⸺ деформация пол-

зучести, точное решение; 3  ⸺ деформация ползучести, простой шаговый метод Эйлера 
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На рис. 6 кривой 1 изображена релаксация напряжений со време-

нем, полученная при помощи точного решения и модифицированного 

шагового метода, а кривой 1  ⸺ с использованием простого шагового 

метода, кривая 2 иллюстрирует релаксацию напряжений, полученную 

методом изохронных кривых. 

 

Рис. 6. Кривые релаксации напряжений со временем: 

1  ⸺ точное решение; 1 ⸺ простой шаговый метод Эйлера; 

2  ⸺ метод изохронных кривых 

 

Выводы. Данный метод позволяет с достаточной степенью точ-

ности проводить расчет напряженно-деформированного состояния 

конструкций в условиях ползучести, это видно сравнения кривых, по-

лученных точным и численным методом. Метод дает возможность 

определить нарастание деформаций с течением времени. Расчеты по-

казывают, что ошибка определения напряжения и деформации состав-

ляет 2–3 процента, а ошибка нахождения времени около 10–20 про-

центов.  
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