551.513 Modeling the spatial and temporal global distribution of artificial stratospheric aerosol for climate stabilization

Parkhomenko V. P. (Bauman Moscow State Technical University/Computing Centre of RAS)


doi: 10.18698/2309-3684-2018-4-107119

The purpose of the study was to estimate the possibility of climate stabilization at the present level by controlled sulfate aerosols emissions into the stratosphere, which reflect part of the incoming solar radiation, i.e. geoengineering. The study is based on a three-dimensional hydrodynamic model of the global climate, including an ocean model with
a real configuration of depths and continents, as well as a model of sea ice evolution, and a model of general atmospheric circulation. We studied the possibility of obtaining the predetermined spatial and temporal global distribution of the stratospheric aerosol under conditions when there is a limited number of aerosol sources. Wind transport and aerosol deposition were taken into account.

[1] Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Cli-mate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 p.
[2] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Computational Modeling of Conjugated Aerodynamic and Thermomechanical Processes in Composite Structures of High-speed Aircraft. Applied Mathematical Sciences, 2015, vol. 9,
no. 98, pp. 4873–4880. http://dx.doi.org/10.12988/ams.2015.55405
[3] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 4, pp. 75–91.
[4] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Finite Difference Methods, Theory and Applications. Lecture Notes in Computer Science, 2015, vol. 9045, pp. 161–168. DOI 10.1007/978-3-319-20239-6_15
[5] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Syzdykov E.K. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie — Proceedings of Higher Educational Institutions. Machine Building, 2014, no. 3, pp. 23–34.
[6] Parkhomenko V.P. Trudy Instituta sistemnogo analiza Rossiyskoy akademii nauk (Proceedings of the Institute for Systems Analysis of the Russian Academy of Science), 2018, vol. 68, no. 2, pp. 38–41.
[7] Parkhomenko V.P. Informatika i ee primeneniya – Informatics and Applications, 2017, vol. 11, no. 2, pp. 65–74.
[8] Parkhomenko V.P., Lang T.V. Improved computing performance and load balan-
cing of atmospheric general circulation model. Journal of Computer Science and Cybernetics, 2013, vol. 29, no. 2, pp. 138–148.
[9] Parkhomenko V.P. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 3, pp. 115–126.
[10] Parkhomenko V.P. Nauka i obrazovanie – Science & education, 2015, no. 4,
pp. 41–57.
[11] Parkhomenko V.P. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 1, pp. 94–108.
[12] Belov P.N., Borisenkov E.P., Panin B.D. Chislennye metody prognoza pogody [Numerical methods of weather forecast]. Leningrad, Gidrometeoizdat Publ., 1989, 375 p.
[13] Parkhomenko V.P. Kompyuternye issledovaniya i modelirovanie — Computer Research and Modeling, 2015, vol. 7, no. 5, pp. 1097–1109.
[14] Caldeira K., Keith D. The Need for Climate Engineering Research. Issues in Science and Technology Studies, 2010, vol. 27, no. 1, pp. 52–57.
[15] Lin A.C. Balancing the Risks: Managing Technology and Dangerous Climate Change. Issues In Legal Scholarship, 2009, vol. 8, no. 3, art. 2.
[16] Budyko M.I. Climate changes. Washington D.C., American Geophysical Union, 1977, 244 p.
[17] Eliseev A.V., Mokhov I.I., Karpenko A.A. Global warming mitigation by means of controlled aerosol emissions of sulphate aerosols into the stratosphere: global and regional peculiarities of temperature response as estimated in IAP RAS CM simulations. Atmospheric and Oceanic Optics, 2009, no. 22, pp. 388–395.

Пархоменко В.П. Моделирование пространственного и временного глобально-го распределения стратосферного аэрозоля искусственного происхождения для стабилизации климата. Математическое моделирование и численные методы, 2018, № 4, с. 107–119.

Работа выполнена при поддержке Проектов РФФИ № 16-01-0466, № 17-01-00693.

Download article

Количество скачиваний: 60