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Приведены расчеты для оценки возможности стабилизации климата на совре-

менном уровне путем управляемых выбросов в стратосферу сульфатных аэрозо-

лей, отражающих часть поступающего солнечного излучения (геоинженерия).  

Исследование основано на трехмерной гидродинамической модели глобального 

климата, включающей модель океана с реальной конфигурацией глубин и конти-

нентов, модель эволюции морского льда и модель общей циркуляции атмосферы. 

Исследована возможность получения предписанного пространственного и вре-

менного глобального распределения стратосферного аэрозоля в условиях, когда 

существует ограниченное количество источников аэрозолей. Приняты во внима-

ние ветровой перенос и осаждение аэрозоля. 
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Введение. Климат — один из основных природных ресурсов, вли-

яющий на экономику, сельское хозяйство, энергетику и другие важные 

аспекты цивилизации. Результаты исследований свидетельствуют  

о том, что человеческая деятельность представляет собой важный фак-

тор, воздействующий на климатическую систему, и в ближайшие деся-

тилетия последствия антропогенного воздействия на нее могут быть ес-

ли не катастрофическими, то существенными. Выбросы парниковых 

газов могут повысить среднюю глобальную температуру воздуха в те-

чение нескольких десятилетий, в то время как естественные причины 

повышения температуры на одно и то же значение составят не менее 

нескольких тысячелетий. Беспрецедентными являются не сами будущие 

изменения в численном измерении, а темпы их роста [1]. Сохраняется 

большая неопределенность таких изменений в региональном масштабе. 

Кроме того, крайне неблагоприятные социально-экономические по-

следствия могут быть вызваны и естественными климатическими изме-

нениями. 

Математическое и численное моделирование является мощным ин-

струментом для исследования климатической системы и прогнозирова-

ния изменений климата. Современное моделирование осуществляется  
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с помощью мощных программных средств, в том числе отечест- 

венных, например, для решения задач нестационарной газодинамики 

многокомпонентного газа разными численными методами [2–5]. 

Модели общей циркуляции представляют собой наиболее слож-

ные климатические модели [1, 6]. В полной версии для изучения пар-

никового эффекта в их состав должны входить модели атмосферы  

и океана. Кроме того, необходимы модели для описания эволюции 

морского льда, а также процессов, происходящих на земной поверх-

ности: образование и изменение снежного покрова, изменение влаж-

ности почвы и эвапотранспирация. Увеличение числа климатических 

наблюдений в атмосфере и океане, организация непрерывного мони-

торинга факторов, вызывающих изменение климата, таких как кон-

центрация парниковых газов, солнечная постоянная, степень про-

зрачности атмосферы, связанная с извержениями вулканов и другими 

природными и антропогенными эффектами, очень важны [1]. Для 

проведения надежных климатических прогнозов требуется мощное 

компьютерное обеспечение [9]. 

Описание и численная реализация климатической модели. 

Климатическая модель Вычислительного центра РАН [6, 10] включает 

в себя модель ОЦА с параметризацией ряда подсеточных процессов, 

модель океана и модель эволюции морского льда [7–9, 11]. Взаимо-

действие между блоками осуществляется в интерактивном режиме.  

Модель атмосферы описывает тропосферу ниже уровня изобари-

ческой тропопаузы [12]. Основные уравнения имеют следующий вид: 
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Здесь V  — скорость течений (ветра); p  — давление; ρ  — плотность 

воздуха; Ω  — угловая скорость вращения Земли; g  — ускорение 

свободного падения; t  — время; q  — отношение смеси водяного па-

ра; T — температура; ( , , , )= ρE E T p q  — внутренняя энергия; 

( , , , )= ρH H T p q  — энтальпия; R — скорость тепловыделения; Q — 

скорость образования влаги в атмосфере.  
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Система уравнений дополняется соответствующими граничными 

условиями. 

Модель ОЦА — это программы, в комплексе имитирующие мно-

гие физические процессы [8, 10, 12]. Можно выделить две основные 

составляющие: блок динамики модели ОЦА, в котором с помощью 

конечных разностей вычисляют течения в атмосфере, описываемые 

примитивными уравнениями [12], и блок физики, в котором вычис-

ляют солнечные и тепловые радиационные потоки, рассматривают 

адиабатические и конвекционные процессы. Результаты, полученные 

в блоке физики, используют в блоке динамики для расчетов течений 

и термодинамических характеристик. В модели использована трех-

мерная разнесенная разностная сетка для скорости и термодинамиче-

ских переменных: температуры, давления, отношения смеси водяного 

пара и т. д. Блок динамики состоит из двух основных компонентов: 

фактических разностных расчетов и спектральной фильтрации. Филь-

трация необходима на каждом временном шаге в областях, близких  

к полюсам, для обеспечения устойчивости счета по времени, когда 

фиксированный временной шаг применяется для всей сферической 

конечно-разностной сетки [8]. Блоки климатической модели подробно 

описаны в работах [10, 11], здесь приведены только ее основные  

характеристики.  

Система уравнений модели океана рассматривается в геострофи-

ческом приближении с фрикционным членом в уравнениях горизон-

тального импульса [11]. Значения температуры и солености удовле-

творяют уравнениям адвекции—диффузии, что позволяет описать 

термохалинную циркуляцию океана. Учтена также процедура кон-

вективного приспособления. 

С помощью динамических уравнений модели эволюции морского 

льда решают задачи при изучении сплоченности и средней толщины 

льда. Рост и таяние льда в модели зависят только от разности между 

тепловым потоком от атмосферы к морскому льду и потоком теплоты 

из льда в океан. С помощью диагностического уравнения моделиру-

ют зависимости для вычисления температуры поверхности льда. 

Блоки модели связаны между собой обменом импульсом, тепло-

ты и воды. Обмен импульсом состоит в использовании скорости 

верхнего слоя океана для адвекции морского льда. Всеми остальны-

ми обменами при расчете обменом импульсом пренебрегается. 

Тепловые потоки между смежными блоками могут быть измене-

ны фазовыми переходами на границах (испарение, таяние и т. д.). 

Континентальный водный сток добавляется к океаническим ячейкам 

на каждом временном шаге. 

Поток пресной воды в атмосферу определяется с учетом испаре-

ния с поверхности земли и сублимации морского льда. Предполага-

ется, что осадки попадают непосредственно в океан. Наличие льда не 
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учитывается, а вода удаляется из океана при испарении или из льда в 

процессе сублимации.  

Модель океана использует равномерную по долготе и синусу ши-

роты разностную сетку размером 72×72 ячеек. Разрешение модели по 

долготе составляет 5°, по широте она изменяется примерно от 1,5° на 

экваторе до 10° на полюсах. Глубина океана представлена в лога-

рифмическом масштабе в виде восьми уровней до 5000 м. 

Численные прогнозные эксперименты и задача стабилизации 

климата. Межправительственная группа экспертов по изменению кли-

мата (МГЭИК) в качестве межправительственного органа, учрежденно-

го совместно в 1988 г. Всемирной метеорологической организацией  

и Программой ООН по окружающей среде, публикует достаточно авто-

ритетные и объективные научно-технические оценки эволюции климата 

и связанных процессов.  

Для Пятого оценочного доклада МГЭИК [1] научное сообщество 

определило набор из четырех новых сценариев эмиссии парниковых 

газов, именуемых репрезентативными траекториями концентраций 

(РТК):  

• один сценарий сокращения выбросов, который предполагает 

весьма низкий уровень воздействия (РТК 2.6);  

• два сценария стабилизации (РТК 4.5 и РТК 6.0);  

• один сценарий с весьма высокими уровнями выбросов парни-

ковых газов (РТК 8.5).  

Таким образом, РТК могут отражать результаты целого ряда 

направлений экономических мер в области климата в XXI в. Соглас-

но РТК 6.0 и РТК 8.5, радиационное воздействие на атмосферу будет 

расти вплоть до 2100 г.; в РТК 2.6 оно достигает максимума и затем 

снижается; в РТК 4.5 оно стабилизируется к 2100 г.  

В рамках описанной здесь глобальной модели на первом этапе 

расчеты прогноза климата до 2100 г. были выполнены с использова-

нием сценариев роста РТК 8.5 (жесткий экспоненциальный рост)  

и РТК 4.5 (мягкий рост, приближающийся к насыщению) [13]. 

Результаты показали увеличение температуры атмосферы у по-

верхности на 2,2 и 1,3 °C соответственно (рис. 1). Повышение темпе-

ратуры над континентами на средних и высоких широтах северного 

полушария достигает 5 °C. 

Наблюдаемые изменения климата привели к более серьезному рас-

смотрению возможной роли геоинженерии в качестве потенциального 

средства предотвращения «чрезвычайной ситуации в климате» [14], та-

кой как быстрое таяние ледниковых щитов в Гренландии и Антарктике, 

или в качестве промежуточной меры, чтобы иметь дополнительное 

время для принятия эффективных мер по смягчению последствий  

выбросов. Общая цель предложений по геоинженерии климата заклю-
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чается во вмешательстве в климатическую систему путем искусствен-

ного изменения энергетического баланса Земли для снижения потенци-

ального повышения температуры и в конечном итоге для стабилизации 

температуры на уровнях ниже, чем прогнозируется. 

 

Рис. 1. Прогноз изменения температуры атмосферы  

при реализации сценариев РТК 8.5 и РТК 4.5 

 

Наиболее широко обсуждаемым вариантом геоинженерии клима-

та является повышение планетарного альбедо (поверхностной отра-

жательной способности солнечного излучения) с использованием 

стратосферных сульфатных аэрозолей [15]. Истоки этого подхода 

лежат в предложении М.И. Будыко в 1974 г. [16]. В работе [17] сде-

лан вывод о том, что количество выбросов серы, необходимое для 

компенсации прогнозируемого потепления к 2050 г., будет состав-

лять от 5 до 16 Tг в год, увеличиваясь до 10–30 Tг в год к концу века. 

Для оценки возможности стабилизации климата на уровне 2010 г. 

путем управляемых выбросов в стратосферу сульфатных аэрозолей, 

отражающих часть поступающего солнечного излучения, в рамках 

описанной модели были проведены серии расчетов [6, 13]. 

Влияние аэрозоля на климат учитывалось множителем в уравне-

нии для температуры атмосферы, который эффективно учитывает 

уменьшение солнечной радиации путем введения альбедо аэрозоль-

ного слоя. Вычисления выбросов аэрозоля для стабилизации климата 

были выполнены для сценариев РТК 8.5 и РТК 4.5 изменения кон-

центрации CO2 с 1980 по 2100 г. Оценка выбросов аэрозолей 10,0 Tг 

в год была получена для 2100 г., что хорошо согласуется с диапазо-

ном от 0,4 до 20 Tг в год, приведенным в [15–17]. Для мягкого сцена-

рия роста объема выбросов CO2 РТК 4.5 получена оценка выбросов 

5,0 Тг в год, что также соответствует указанному выше диапазону 

(рис. 2). 
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Рис. 2. Годовые выбросы серного аэрозоля  

для стабилизации климата 

 

 

Рис. 3. Отклонение температуры атмосферы стабилизированного  

климата (2100 г.) от современного (сценарий РТК 8.5): 

а — июль; б — январь 
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Концентрацию аэрозолей с 2010 по 2100 г. рассчитывают как па-

раметр [13], управляющий стабилизацией температуры приземного 

воздуха на уровне 2010 г. Было показано, что таким образом невоз-

можно достичь пространственного и сезонного равномерного при-

ближения к существующему климату, но можно значительно снизить 

парниковый эффект. Выбросы аэрозолей в атмосферу приведут к из-

менениям температуры и соответственно к изменению климата по 

сравнению с климатом 2010 г. (рис. 3). 

Расчеты в предположении об однородном пространственном рас-

пределении аэрозолей показывают возможность стабилизации сред-

ней глобальной температуры атмосферы, но климат будет холоднее 

на 0,1–0,2 градуса в низких и средних широтах, а в высоких широ- 

тах — теплее на 0,2–1,2 градуса. 

Моделирование распределения стратосферного аэрозоля при 

наличии конечного числа источников. Для оценки возможности 

получения заданного (например, однородного) распределения аэро-

золей в верхних слоях тропосферы были проведены численные экс-

перименты по описанной климатической модели, дополненной урав-

нениями, описывающими транспорт и эволюцию аэрозолей: 

( )
( ) ,

∂ ρ + ∇ ρ =
∂

s
s S

t
V  

где s — концентрация примеси в атмосфере; S — источник примеси  

в данной точке.  

Источник суммарно определяется выбросами аэрозолей в данной 

точке, процессами гравитационного осаждения, вымывания с осадками 

и химических превращений.  

Многочисленные расчеты были сделаны с учетом разных мощ- 

ностей выбросов аэрозолей, количества и положения источников. 

Число эмиссионных зон варьировалось от 3 до 8. Расчеты показали, 

что устойчивое горизонтальное распределение количества аэрозолей 

достигается только с постоянными выбросами аэрозолей в опреде-

ленных регионах. Они задаются фиксированной во времени концен-

трацией в этих регионах, что моделирует непрерывную подкачку 

аэрозолей в стратосферу. 

Расчеты показывают (рис. 4), что глобальное распределение аэро-

золей в стационарном состоянии достигается в течение примерно че-

тырех месяцев. Если выбросы прекращаются через три года, количест- 

во аэрозолей падает практически до нуля примерно через два года  

(1,7 года), что согласуется с данными вулканического происхождения. 

Постоянные выбросы в пяти регионах обеспечивают достаточно 

равномерное зональное распределение аэрозолей. Однако меридио-

нальное распределение демонстрирует сильную зависимость от ши-
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роты. Минимальная концентрация аэрозолей наблюдается в эквато-

риальной области, а максимальная — в области полюсов (см. рис. 4), 

что объясняется особенностями циркуляции атмосферы. 

 

 

Рис. 4. Зависимость глобального распреде-

ления аэрозолей от времени (а) и меридио- 

нальное распределение аэрозолей (б ) 

 

Поле распределения аэрозолей через один месяц от начала вы-

бросов в пяти фиксированных географических регионах, обозначен-

ных на карте черными крестиками, показано на рис. 5 (более темные 

области соответствуют более высокой концентрации). Предполагает-

ся постоянная концентрация аэрозолей в этих регионах. Расчеты со-

ответствуют июлю месяцу. Отметим более широкое распространение 
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аэрозолей в южном полушарии зимой, что связано с более интенсив-

ными зональными ветрами по сравнению с северным полушарием  

в это время года. 

 

Рис. 5. Поле распределения аэрозолей через один месяц  

от начала выбросов 

 

Поле распределения аэрозолей через три года с момента начала 

эмиссии для той же конфигурации источников показано на рис. 6. 

Расчеты показывают достижение устойчивого состояния распределе-

ния аэрозолей (см. рис. 4). Сохранение постоянных выбросов в фик-

сированных регионах является обязательным. Несмотря на наличие 

источника аэрозоля, его концентрация (0,2 г/м2) в экваториальной 

области ниже, чем на территориях со средними и высокими широта-

ми (0,4 г/м2 и более). Аналогичные результаты дают расчеты с раз-

ным количеством источников (от 3 до 8). 

 

Рис. 6. Поле распределения аэрозоля через три года  

с момента начала эмиссии 
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Заключение. Для расчета последствий применения методов гео-

инженерии была использована глобальная климатическая трехмерная 

гидродинамическая модель, включающая в себя модель океана с ре-

альными глубинами и континентами, модель эволюции морского 

льда и модель общей циркуляции атмосферы. Ряд сценариев выбро-

сов, описанных в статье, продемонстрировал снижение средней гло-

бальной температуры атмосферы у подстилающей поверхности. 

Рассматривается эволюция сульфатного аэрозоля в разных усло-

виях инжекции для анализа влияния на климат. Концентрацию аэро-

золей с 2010 по 2100 г. вычисляют как управляющий параметр для 

стабилизации среднегодовой температуры приземного воздуха. 

Исследована возможность получения предписанного простран-

ственного и временного глобального распределения стратосферных 

аэрозолей в условиях, когда существует ограниченное количество  

источников аэрозолей. Приняты во внимание перенос ветра и осаж- 

дение аэрозолей. Показана невозможность достижения достаточно 

однородного распределения аэрозолей при условии небольшого ко-

нечного числа фиксированных источников. 

Стратегии снижения концентрации СО2 в атмосфере относитель-

но долговременные (от десятилетий до столетий) и дорогостоящие. 

Изменение альбедо может происходить очень быстро и при стоимо-

сти, которая составляет 1 % или менее от стоимости мероприятий по 

снижению уровня CO2 в атмосфере. 

 

Работа выполнена при поддержке Проектов РФФИ № 16-01-0466, 

№ 17-01-00693. 
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The purpose of the study was to estimate the possibility of climate stabilization at the pre-

sent level by controlled sulfate aerosols emissions into the stratosphere, which reflect 

part of the incoming solar radiation, i.e. geoengineering. The study is based on a three-

dimensional hydrodynamic model of the global climate, including an ocean model with  

a real configuration of depths and continents, as well as a model of sea ice evolution, and 

a model of general atmospheric circulation. We studied the possibility of obtaining the 

predetermined spatial and temporal global distribution of the stratospheric aerosol un-

der conditions when there is a limited number of aerosol sources. Wind transport and 

aerosol deposition were taken into account. 
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