517:519.6 Study of fast multipole boundary element method efficiency for solving Poisson equation

Lazarev A. A. (Baranov Central Institute of Aviation Motor Development/Bauman Moscow State Technical University)

BOUNDARY ELEMENT METHOD, FAST MULTIPOLE METHOD, VOLUME SOURCES


doi: 10.18698/2309-3684-2018-4-4156


The study introduces the algorithms for traditional and fast multipole boundary element methods for solving two-dimensional Poisson equation with non-potential volume sources. The influence of the method parameters on the speed and accuracy of the solu-tion is numerically studied; recommendations are given on the joint application of the methods.


[1] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mekhaniki tverdykh sred [Continuum mechanics. In 4 vols. Vol. 4. Fundamen-tals of solids mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[2] Vlasova E.A., Zarubin V.S., Kuvyrkin G.N. Priblizhennye metody matemati-
cheskoy fiziki: uchebnik dlya vtuzov [Approximate methods of mathematical physics: textbook for universities]. Moscow, BMSTU Publ., 2001, 699 p.
[3] Hartmann F., Katz C. Structural Analysis with Finite Elements. Springer-Verlag Berlin Heidelberg, 2007, 597 p.
[4] Plyusnin A.V. Matematicheskoe modelirovanie i chislennye metody — Mathe-matical Modeling and Computational methods, 2014, no. 2 (2), pp. 77–100.
[5] Brebbia C. A., Telles J. C. F., Wrobel L. Boundary Element Techniques. Springer-Verlag Berlin Heidelberg, 1984, 464 p. [In Russ.: Brebbia C. A., Telles J. C. F., Wrobel L. Metody granichnykh ehlementov. Moscow, Mir Publ., 524 p.].
[6] Liu Y.J., Mukherjee S. et al. Recent advances and emerging applications of the boundary element method. ASME, 2011, vol. 64.
[7] Liu Y.J. Fast multipole boundary element method: theory and applications in engineering. Cambridge University Press, 2009, 235 p.
[8] Beatson R., Greengard L. A short course on fast multipole methods. Wavelets, multilevel methods and elliptic PDEs. Oxford University Press, 1997, рp. 1–37.
[9] Galanin M.P., Savenkov E.B. Metody chislennogo analiza matematicheskikh modeley [Methods of numerical analysis of mathematical models]. Moscow, BMSTU Publ., 2010, 590 p.
[10] Balandin M.Yu., Shurina E.P. Metody resheniya SLAU bolshoy razmernosti [Methods of solving systems of linear equations of large dimension]. Novosi-birsk, NSTU Publ., 2000, 70 p.
[11] Martinson L.K., Malov Yu.I. Differencialnye uravneniya matematicheskoy fizi-ki: uchebnik dlya vtuzov [Differential equations of mathematical physics: text-book for universities]. Moscow, BMSTU Publ., 2002, 368 p.


Лазарев А.А. Исследование эффективности быстрого мультипольного метода граничных элементов для решения уравнения Пуассона. Математическое модели-рование и численные методы, 2018, № 4, с. 41–56.



Download article

Количество скачиваний: 53