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Предложены алгоритмы традиционного и быстрого мультипольного методов 

граничных элементов для решения двумерного уравнения Пуассона при наличии 

непотенциальных объемных источников. Выполнено численное исследование влия-

ния параметров метода на скорость и точность решения, приведены рекоменда-

ции по совместному применению методов. 
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Введение. К наиболее распространенным численным методам ре-

шения уравнения Пуассона [1] относятся методы: конечных разностей 

(МКР), конечных объемов (МКО), конечных элементов (МКЭ) и гра-

ничных элементов (МГЭ) [2]. В отличие от остальных методов в МГЭ 

используют фундаментальные решения, а не их сеточные аппроксима-

ции, что позволяет получить решение высокой гладкости и точности 

по сравнению с другими методами [3, 4]. Размерность задачи по про-

странству снижается за счет дискретизации неизвестных функций 

только на границе расчетной области, что дает выигрыш [5, 6] для ли-

нейных задач с потенциальными объемными источниками, задач  

с движущимися границами, а также позволяет непосредственно ре-

шать задачи в бесконечных областях. Для решения задачи МГЭ при 

наличии непотенциальных объемных источников можно использовать 

сетку внутри области для вычисления объемных интегралов и форми-

рования правой части матрицы системы [5]. Если на границе имеется 

N  узлов, внутри области в общем случае будет 2( )O N  узлов. В МГЭ 

при этом необходимо решать систему уравнений с полностью запол-

ненной матрицей размером ,N N×  что требует 3( )O N  операций при 

решении прямым методом и 2( )O N  операций — при решении итера-

ционным методом. Затраты на учет объемных источников при форми-

ровании матрицы системы составляют 3( ),O N  а для того чтобы полу-

чить результаты в области, необходимо 4( )O N  операций. Таким 

образом, МГЭ при наличии объемных источников представляет собой 

высокозатратный метод по сравнению с МКР, МКО и МКЭ, в кото-
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рых суммарная сложность формирования матрицы составляет 
2( ).O N  Наряду с другими подходами для уменьшения сложности 

вычислений в МГЭ [6, 7] служит метод быстрого суммирования с ис-

пользованием мультипольного разложения потенциала. Метод был 

впервые предложен в середине 1980-х годов для ускорения расчета 

взаимодействий в задаче N  тел [8]. Он позволяет вместо N N⋅  рас-

сматривать порядка N N+  взаимодействий. В работе проведено 

сравнение традиционного (МГЭ) и быстрого мультипольного 

(МГЭМР) методов граничных элементов для решения задач с непо-

тенциальными объемными источниками, исследовано влияние неко-

торых параметров методов на точность и скорость решения. 

Интегральная постановка задачи. Уравнение Пуассона для не-

известной функции (потенциала) ϕ  имеет вид 

0,f∆ϕ + =  1 2( , ) ,x x V∀ = ∈x                              (1) 

где в двумерном случае 

2 2

2 2
1 2

,
x x

∂ ∂∆ = +
∂ ∂

                                          (2) 

а ( )f f= x  — функция распределения плотности объемных источ- 

ников.  

На границе области S V= ∂  заданы условия вида 

,qαϕ + β = γ  ,q
∂ϕ=
∂n

                                      (3) 

где q  — производная потенциала по нормали n  к границе; ,α  ,β  γ  — 

известные функции координаты .x  

Рассмотрим [5, 7] граничную интегральную постановку задачи (1, 3) 

в виде граничного интегрального уравнения (ГИУ): 

( ) ( ) [ ( , ) ( ) ( , ) ( )] ( )

( , ) ( ) ( ),

S

V

c G q F dS

G f dV

ϕ = − ϕ +

+

∫

∫

x x x y y x y y y

x y y y
                (4) 

где ( ) 1/ 2c =x  для S∀ ∈x  и ( ) 1c =x  для .V∀ ∈x  

В уравнении (4) использовано фундаментальное решение дву-

мерного уравнения Лапласа 

1
( , ) ln( ),

2
G r= −

π
x y                                      (5) 
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а также его производная по нормали к границе :n  

,

( , ) 1
( , ) ( ),

( ) 2
k k

G
F r n

∂= = −
∂ π

x y
x y y

n y
                          (6) 

где r = −x y  — расстояние между точкой источника x  и точкой  

поля .y  

Для вычисления производных искомой функции необходимо ис-

пользовать гиперсингулярное уравнение [5, 7] 

[ ]( ) ( ) ( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( );

S

V

c q dS

f dV

∂ϕ = − ϕ +
∂

+

∫

∫

x x K x y y H x y y y
x

K x y y y

                 (7) 

,

( , ) 1
( , ) ;

2
k

G
r

r

∂= =
∂ π
x y

K x y
x

 

2

, ,2

( , ) 1
( , ) [ ( ) 2 ( )].

2
k k l l

F
n r r n

r

∂= = −
∂ π

x y
H x y y y

x
                 (8) 

Уравнения метода граничных элементов. Разобьем границу 

двумерной области на «постоянные» граничные элементы [5] — 

прямолинейные сегменты ,jS∆  на которых потенциал ϕ  и его про-

изводная q  по нормали к границе принимают постоянные значения 

( ) ,jϕ = ϕy  ( ) ,jq q=y  ,jS∈ ∆y  1... .j N=                       (9) 

Для дискретизации уравнения (4) используем метод коллокаций 

[2]. В качестве точки коллокации выберем центр ix  i-го сегмента,  

в результате чего уравнение (4) примет вид 

1 1

1
[ ] ,

2
j j j

N N

i i j i j i j i j

j jS S S

G q F dS G dSq F dS
= =∆ ∆ ∆

 
 ϕ = − ϕ = − ϕ
 
 

∑ ∑∫ ∫ ∫        (10) 

где ,iG  iF  — ядра, вычисленные в точке .ix  

Уравнение (10) запишем в виде 

1

1 ˆ[ ],
2

j

N

i ij j ij j

j S

g q f
= ∆

ϕ = − ϕ∑ ∫  1... ,i N=                       (11) 

где интегралы 

,

j

ij i

S

g G dS

∆

= ∫  ˆ

j

ij i

S

f F dS

∆

= ∫                            (12) 
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можно вычислить аналитически [7]. Для того чтобы составить итого-

вую систему 

,=Au b                                                (13) 

учтем граничные условия (3) на каждом сегменте. Тогда 

,j ju = ϕ  ,ij ij ijA f g= + α β  ,ij ijb g= γ βɶ
 при 0,β ≠  

,j ju q=  ,ij ijA g= −  ,ij ij jb f= − ϕ γ βɶ  при 0,β =  
1

,
N

iji

j

b b
=

=∑ ɶ         (14) 

где ˆ
ij ijf f=  при i j≠  и ˆ 1/ 2.ii iif f= +  Для учета объемных источни-

ков разобьем область V  на eN  треугольных ячеек ,eV  в правые час- 

ти (10, 14) добавим 

1 1 1

( , ) ( ) ( ) ( , ) ( ),
e e G

k

N N N

i i i h i h h

e e hV V

b G f dV G fdV w G f
= = =

= = =∑ ∑∑∫ ∫x y y y x y y    (15) 

где hw  — вес; hy  — координата; GN  — число точек интегрирования 

квадратуры Гаусса [9].  

После решения системы линейных алгебраических уравнений 

(СЛАУ) (15) для вычисления значений потенциала и его производ-

ных в точках внутри области используем зависимости (4, 7). 

Метод быстрого мультипольного разложения потенциала. 

Рассмотрим способ вычисления интегралов из формул (4, 7) с по- 

мощью мультипольного разложения потенциала [7]. Мультипольное 

разложение уравнения (4) (SM- трансляция) получим, записав ряд 

Лорана для представления ядра G  в комплексном виде [7]: 

0 0

0

1
( , ) ( ) ( ) ( ) ( );

2
k c k c

kS

G z z q z dS z M z O z z
∞

=
= −

π∑∫                  (16) 

( ) ( ) ( ) ( ),k c k c

S

M z I z z q z dS z= −∫  0,1, 2, ...,k =                      (17) 

где ( )k cM z  — моменты относительно точки ,cz  не зависящие от  

положения точки коллокации 0 ,z  а ( ) !,k
kI z z k=  0,k ≥  ( )kO z =  

( 1)! ,kk z= −  1,k ≥  0 ( ) ln( ).O z z= −  Для постоянных граничных эле-

ментов моменты можно вычислить аналитически [7]. 

При переносе точки разложения из cz  в cz ′  моменты относитель-

но нового положения вычислим, не прибегая к формуле (17). Выра-

зим их через моменты относительно старого положения перегруппи-
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ровкой слагаемых в (16) и, используя бином Ньютона, получим фор-

мулу трансляции моментов (MM) 

0

( ) ( ) ( ).
k

k c k l c c l c

l

M z I z z M z′ ′−
=

= −∑                             (18) 

Запишем для (16) локальное разложение (LT-трансляцию) в виде 

ряда Тейлора относительно точки ,Lz  0 ,L L cz z z z− << −  

0 0

0

1
( , ) ( ) ( ) ( ) ( ),

2
l L l L

lS

G z z q z dS z L z I z z
∞

=
= −

π∑∫               (19) 

где коэффициенты  

0

( ) ( 1) ( ) ( )l
l L l k L c k c

k

L z O z z M z
∞

+
=

= − −∑                     (20) 

дают формулы трансляции момента в точку локального разложения 

(ML-трансляции). Удержим в ряде (20) первые p  членов и, используя 

бином Ньютона, запишем формулу локальной трансляции (LL-

трансляции) при переносе центра локального разложения из Lz  в :Lz ′  

0

( ) ( ) ( ) ( ) ( ).
p p l

l L m l L L m L m L L l m L

m l m

L z I z z L z I z z L z
−

′ ′ ′− +
= =

= − = −∑ ∑         (21) 

Преобразования интегралов, содержащих ядро ,F  имеют вид 

0 0

1

1
( , ) ( ) ( ) ( ) ( );

2
c

k c k c

kS

F z z z dS z O z z M z
∞

=
ϕ = −

π∑∫ ɶ                (22) 

1( ) ( ) ( ) ( ) ( ),

c

k c k c

S

M z n z I z z z dS z−= − ϕ∫ɶ  1, 2, 3, ...k =            (23) 

Выражения ММ-, МL-, LL-, LT-трансляций для ядра F  остаются 

такими же с учетом 0 0.M =ɶ  Таким образом, трансляции для ядра kM  

непосредственно применяют к ,kMɶ  которые для постоянных гранич-

ных элементов можно вычислить аналитически. 

Мультипольное разложение интегралов в уравнении (7) можно 

получить дифференцированием соответствующих разложений для 

уравнения (4), например: 
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0 0
0

1 0

1

( , ) ( ) ( , ) ( ) ( )

1
( ) ( ).

2

c cS S

l L l L

l

K z z dS z G z z q z dS z
z

L z I z z
∞

−
=

∂= =
∂

= −
π

∫ ∫

∑
                (24) 

Выражения для вычисления моментов и трансляций остаются 

точно такими же, как и для ядра .G  

Для ускорения вычисления объемных интегралов применим  

к выражению (15) в виде квадратуры Гаусса разложение, аналогич-

ное (16), коэффициенты которого рассчитывают по формулам  

ˆ ( ) ( ) ( ),k c k h c h hM z I z z w f z= −  1, 2, 3, ...,k =  1... ,Gh N=             (25) 

где hz  — положение точек квадратуры. Выражения для остальных 

трансляций остаются такими же, как для ядра .G  

В работе [7] приведены оценки ошибок при вычислении интегра-

лов через ряды (16–24), позволяющие выбрать число членов разло-

жения, необходимое для достижения заданной точности. Эти оценки 

опираются на значения интегралов ( ) ( )
cS

q z dS z∫  и ( ) ( ),
cS

z dS zϕ∫  

которые априори неизвестны, и могут быть вычислены только после 

решения задачи. Сложность алгоритма в отсутствии объемных сил 

[7] составляет 2( )O p N  для N  граничных элементов при одинаковом 

числе p  членов мультипольного (16) и локального (19) разложений. 

При наличии SN  источников и TN  приемников сложность вычисле-

ний составит 2 2( ),S TO p N p N+  что при 2( )O N  элементов и узлов 

внутри области даст сложность 2 2( )O p N  как на этапе учета объем-

ных источников при составлении итоговой СЛАУ, так и на этапе рас-

четов внутри области. Хотя это и уравнивает МГЭ, МКЭ, МКР  

и МКО по сложности вычислений, в последних трех методах вычис-

лений для каждого объемного элемента или узла, как правило, мень-

ше, поэтому вопрос о соотношении скорости и точности расчета  

в каждом конкретном случае остается открытым. 

Алгоритм МГЭМР. Для решения итоговой несимметричной си-

стемы линейных алгебраических уравнений в МГЭМР используем 

итерационный алгоритм обобщенного метода минимальных невязок 

с рестартом GMRES [10]. Каждое уравнение системы представляет 

собой сумму интегралов по всем элементам для источника, поме-

щенного в какой-либо из узлов. Для вычисления интегралов по эле-

ментам, значительно удаленным от точки источника, используем 

мультипольное разложение потенциала по формулам (16–24), а для 
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вычисления интегралов по оставшимся элементам ближнего поля — 

стандартный подход МГЭ. Итоговую матрицу при быстром сумми-

ровании не формируют, вычисляют лишь ее произведение на теку-

щее приближение к вектору решения. Рассмотрим решение задачи 

поэтапно. 

1. Границу области разобъем на элементы, внутри области для 

учета объемных источников и представления результатов расчета по-

строим сетку треугольных элементов. Если нет необходимости учи-

тывать непотенциальные объемные источники, для представления 

решения внутри области можно обойтись только узлами без учета их 

связанности в элементы сетки. 

2. Для описания взаимного положения источников — граничных 

элементов, точек квадратур объемных элементов, а также приемни-

ков — узлов внутри и на границе области, построим соответствую-

щие квадрантные деревья [7]. Назовем квадрат, ограничивающий 

данную область S, клеткой нулевого уровня. Эту родительскую клет-

ку поделим на четыре одинаковых дочерних клетки (квадранта) 

уровня 1. Далее будем рекурсивно делить клетки, если в них нахо-

дится хотя бы один граничный элемент. Деление заканчиваем, если 

клетка содержит меньше граничных элементов, чем некоторое задан-

ное их количество. Клетку, у которой нет дочерних клеток, назовем 

листом. Граничный элемент принадлежит клетке, если его центр рас-

положен внутри нее. Положение объемных источников определяется 

центром соответствующего треугольного элемента. 

На рис. 1 показано покрытие кольцевой области квадрантным де-

ревом для граничных элементов, в листе содержится один элемент. 

3. Обходя уровни снизу вверх, вычислим моменты для всех клеток 

дерева, удерживая p  членов ряда в разложении. На листе определим 

моменты (17, 23), здесь Sc  — множество элементов, попавших в лист, 

cz  — центр клетки. Для каждой родитель-

ской клетки моменты вычислим суммиро-

ванием моментов четырех ее дочерних кле-

ток по формуле MM-трансляции (18), где 

cz ′  — центр родительской клетки, cz  — 

центр дочерней клетки (рис. 2). Моменты 

необходимо вычислять на каждой итерации 

решения СЛАУ, так как в их выражения 

входят интегралы от ядер и значения по-

тенциала и его производных с текущей 

итерацией. 

4. В нисходящем проходе по структуре 

дерева вычислим коэффициенты локаль-

 

Рис. 1. Квадрантное дерево 

для граничных элементов, 

кольцевая область 
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ного разложения для всех клеток. Две клетки будем считать сосед-

ними (смежными) на уровне ,l  если у них есть хотя бы одна общая 

вершина. Два листа из разных уровней также будут соседними, если 

родительская клетка одного из них имеет общую вершину с другим. 

Клетки, не смежные на уровне ,l  родительские клетки которых сосе-

ди на уровне 1,l −  будем называть хорошо отстоящими на уровне .l  

Множество хорошо отстоящих клеток на уровне l  для заданной 

клетки C  образуют список взаимодействия. Клетки, родители кото-

рых не соседствуют с родителем клетки ,C  назовем отдаленными. 

Локальное разложение, связанное с клеткой ,C  — это сумма вкладов 

от клеток из списка взаимодействия и от всех отдаленных клеток 

(рис. 3). Первые клетки рассчитаем как ML-трансляцию (20) момен-

тов клеток из списка взаимодействия, вторые — как LL-трансляцию 

(21) для родителя клетки ,C  где точка разложения сдвигается из цен-

тра родителя C  в центр самой клетки .C  

 

Рис. 2. Схема счета в восходящем и нисходящем проходах 

 

Рис. 3. Виды клеток в относительном расположении 
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5. Для вычисления интегралов контур интегрирования поделим 

на зону близко- и дальнодействия 

0 0

0

( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ).

Near

Far

S S

S

G z z q z dS z G z z q z dS z

G z z q z dS z

= +

+

∫ ∫

∫
                 (26) 

Здесь интеграл по NearS  (клетка C  и ее соседи) вычислим по форму-

лам (12, 15), а интеграл по FarS  — с помощью мультипольного разло-

жения с использованием ML- и LL-трансляций для сдвига точки раз-

ложения из центра клетки C  в точку коллокации 0z  (см. рис. 3) и LT-

трансляцию (19) для вычисления значения ряда в точке коллокации. 

6. Перед решением СЛАУ итерационным методом при наличии 

объемных источников определим их вклад в правую часть системы, 

выполнив один раз восходящий проход по дереву объемных источ-

ников и нисходящий проход по дереву граничных элементов. На эта-

пе итерационного алгоритма решения итоговой системы =Au b  вы-

числяем новое приближение вектора неизвестных u  и матрично-

векторное произведение Au  (согласно пункту 3) до тех пор, пока 

норма невязки системы r = −Au b  не станет меньше заданного зна-

чения. 

7. В результате решения на границе известны значения потенциа-

ла и его производной по нормали к границе. Используя формулы ко-

нечных разностей, вычислим производную по касательной к каждому 

граничному элементу. Преобразуем производные в глобальную де-

картову систему координат. Для вычисления потенциала и его произ-

водных в точках внутри области один раз выполним восходящие 

проходы по деревьям граничных элементов и объемных элементов  

и нисходящий проход по дереву узлов внутри области. 

Тестирование алгоритмов. Рассмотрим задачу о распределении 

потенциала в кольце (см. рис. 1) с внутренним радиусом a и внешним 

радиусом b 

0,∆ϕ =  ,ar a=ϕ = ϕ  ,br b=ϕ = ϕ                          (27) 

аналитическое решение которой [11] в полярных координатах имеет 

вид 

( ) ln( / ) ln( / ),a br r b r aϕ = ϕ + ϕ  2 2
1 2 .r x x= +                  (28) 

В вычислениях принято 1,a =  2,b =  50,aϕ =  90bϕ =  без привяз-

ки к какой-либо системе единиц. Внешняя и внутренняя границы 
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кольца разбиты на одинаковое количество элементов. Параметры ис-

пользуемых в расчетах сеток приведены в табл. 1. Параметры макси-

мальной по числу элементов сетки обусловлены внутренними огра-

ничениями использованной программы для построения сетки.  

Таблица 1 

Параметры использованных в расчете сеток 

Nmesh 1 2 3 4 5 6 7 8 

h 0,1811 0,0942 0,0471 0,0314 0,0235 0,0188 0,0094 0,0047 

Nbound 104 200 400 600 800 1000 2000 4000 

Ntrias 680 2 480 9 880 22 368 39 552 61 962 247 164 986 862 

Nnodes 392 1 340 5 140 11 484 20 176 31 481 124 582 495 431 

Примечание. Nmesh — номер сетки; h — характерный размер элементов сетки; 

Nbound — число граничных элементов сетки; Ntrias — число элементов объемной 

сетки; Nnodes — число узлов в сетке (граничных и внутренних). 

 

На каждой сетке была проведена серия расчетов для следующих 

вариантов метода: МГЭ с решением системы путем LU-разложения с 

полным выбором ведущего элемента [9], МГЭ с методом GMRES, 

МГЭМР с числом членов ряда p = 8, 16, 32, одинакового для мульти-

польного и локального разложений. Максимальное количество эле-

ментов в листах граничного дерева и дерева внутренних точек было 

принято равным 20. В решателе GMRES использовали 70 векторов 

для построения базиса (в некоторых случаях требовался рестарт ал-

горитма), СЛАУ решали до получения невязки меньшей, чем 
2 1410 ..10− −ε =  с шагом степени 2. Зависимость времени решения  

системы от числа граничных элементов для некоторых вариантов по-

казана на рис. 4. Относительная погрешность по сравнению с анали-

тическим решением приведена на рис. 5. Время вычисления резуль-

татов внутри области и время одного умножения быстрым методом 

для граничных узлов приведены на рис. 6. 

Чтобы продемонстрировать возможности метода для решения за-

дач с большим числом граничных элементов и изучить влияние па-

раметров метода на скорость расчета при отсутствии объемных  

источников, были проведены расчеты для большого числа граничных 

элементов при фиксированном числе и расположении точек внутри 

области, не связанных в сетку. Вычисления проводили в 32-битной 

системе, в которой можно адресовать 4 Гбайт памяти, что соответ-

ствует полностью заполненной матрице размером 23000 23000≈ ×  из 

чисел двойной точности. Тем не менее на практике весь этот объем 

недоступен для пользователя как по системным причинам, так и из-за 

особенностей реализации и необходимости хранения дополнитель-

ной информации. 
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Рис. 4. Время решения СЛАУ в зависимости от числа 

граничных элементов: 

МГЭ: 1 — LU-разложение; 2 — GMRES, 
8

10 ;
−ε =  3 — GMRES, 

12
10 ;

−ε =  4 — GMRES, 
14

10 ;
−ε =  МГЭМР и GMRES: 5 — p = 

= 32,   
8

10 ;
−ε =   6 — p = 32,  

12
10 ;

−ε =   7 — p = 32,  
14

10 ;
−ε =   

8 — p = 8, 
8

10 ;
−ε =  9 — p = 8, 

14
10

−ε =
 

 

 

 

Рис. 5. Относительная погрешность в задаче  

без объемных источников: 

расчет потенциала: 1 — МГЭ и МГЭМР, p = 16, 32; 2 — МГЭМР, 

p  = 8;  расчет  производных  потенциала:  3  —  МГЭ  и  МГЭМР,  

p = 32; 4 — МГЭМР, p = 16; 5 — МГЭМР, p = 8 
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Рис. 6. Время расчета результатов в области без объемных  

источников (1–5) и с объемными источниками (6–11): 

1 — МГЭ; МГЭМР: 2 — p = 8; 3 — p = 32; правая часть МГЭМР:  

4 — p = 8;  5 — p = 32; 6 — МГЭ; МГЭМР: 7 — p = 8; 8 — p = 32; правая  

часть: 9 — МГЭ; МГЭМР: 10 — p = 8; 11 — p = 32 

 

 

Используя стандартные средства распределения памяти, удалось 

разместить в памяти систему размером 6 000, тогда как разместить 

систему размером 7 000 уже не удалось. Дальнейший анализ выпол-

нен для МГЭМР, в котором хранить матрицу не требуется. Относи-

тельная погрешность расчета указана на рис. 7. 

 

Рис. 7. Относительная погрешность в задаче с объемными 

источниками расчета потенциала (1 — МГЭ, МГЭМР  

p = 8…32; 2 — МГЭМР p = 4) и расчета производных  

потенциала (3 — МГЭ, МГЭМР p = 8…32; 4 — МГЭМР p = 4) 
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Время расчета в зависимости от размера подпространства 

GMRES и точности для сеток разного размера приведено в табл. 2 

(выделены минимальные времена счета). Расчеты проведены для  

p = 32 членов ряда мультипольного и локального разложений. Мак-

симальное число элементов в листах граничного дерева и дерева 

внутренних точек было принято равным 20. 

Таблица 2 

Время расчета в зависимости от размера подпространства GMRES 

и точности 

Nbound 12000 24000 48000 96000 192000 

h 0,0015708 7,85398E-4 3,92699E-4 1,9635E-4 9,81748E-5 

ε[φ] 9,374E-6 2,28976E-6 5,48135E-7 1,26885E-7 2,7969E-8 

ε[dφ] 2,26557E-6 7,80863E-7 2,63266E-7 8,56403E-8 8,23266E-7 

m 

ε 
50 100 200 50 100 200 50 100 200 100 200 300 200 300 400 

10–8 
Niter 2 2 2 2 2 2 2 2 2 2 2 2 77 77 77 

t 1 1 1 2 2 2 5 5 5 11 11 11 721 721 721 

10–12 
Niter 99 102 202 185 124 202 356 194 202 351 237 365 366 332 609 

t 33 34 68 130 88 144 626 343 359 1283 870 1345 3448 3141 5768 

10–14 
Niter 191 135 265 324 202 246 – – – – – – – – – 

t 64 46 89 228 143 174 – – – – – – – – – 

 

Для тестирования алгоритма при наличии объемных источников 

рассмотрим задачу о распределении потенциала в кольце (см. рис. 1) 

с внутренним радиусом a и внешним радиусом b: 

( )2 2 2
1 2 1 2sin( ) ;AW Wx x x x∆ϕ = +  

2sin( cos( )sin( ));
r a

A Wa=ϕ = θ θ  

2sin( cos( )sin( ));
r b

A Wb=ϕ = θ θ                           (29) 

1cos( ) / ,x rθ =  2sin( ) / ,x rθ =  [0;2 ).θ∈ π  

Непосредственной подстановкой можно убедиться, что решением 

задачи (27) в кольце является функция 

1 2 1 2( , ) sin( ).x x A W x xϕ =                                (30) 

В вычислениях приняты безразмерные значения 1,a =  2,b =  

50,A =  5.W =  Расчеты проведены на сетках, параметры которых да-

ны в табл. 1, но треугольные элементы были использованы для инте-

грирования объемных источников теплоты. Все деревья, используе-
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мые в расчете, содержали не более 20 элементов в листе. Анализ ре-

зультатов позволяет сделать следующие выводы. 

1. Изменение числа членов разложения в диапазоне 8...32p =  не 

приводит к существенному изменению скорости счета (см. рис. 6), 

что, по-видимому, связано с архитектурой современных вычисли-

тельных машин, и предоставляет возможности для дальнейшей про-

граммной оптимизации метода. 

2. Выбор количества членов ряда разложения в первую очередь 

определяется характерным размером элементов сетки (см. рис. 5 и 7). 

Снижение характерного размера элемента сетки должно сопровож-

даться увеличением числа членов разложения. Если количество чле-

нов ряда недостаточно для достижимой стандартным МГЭ точности 

или даже таково, что МГЭМР дает менее точное решение, чем МГЭ, 

в той же ситуации, то число итераций решения СЛАУ и время счета 

значительно возрастают (см. рис. 4, табл. 2). На рис. 5 и 7 видно, что 

существует размер сетки, при котором МГЭ и МГЭМР теряют точ-

ность счета производных, для сохранения которой необходимо уве-

личить разрядность машинного числа (вычисления проводились в 

двойной точности). Увеличение числа членов разложения больше 

32p =  также приводит к переполнению при счете и требует исполь-

зования более высокой разрядности. 

3. Не имеет смысла пытаться получить решение СЛАУ с боль-

шим запасом точности, так как все представленные уровни погреш-

ности решения СЛАУ обеспечивают одинаковую точность решения 

задачи по сравнению с аналитическим. Когда точность, решения 

МГЭ и МГЭМР одинакова, изменение времени счета качественно 

одинаково для двух методов. Увеличение точности итерационного 

метода приводит к увеличению времени счета, в том числе непро-

проциональному (см. рис. 5). 

4. Для получения высокой скорости счета необходимо выбирать 

оптимальный размер подпространства GMRES (см. табл. 2). 

5. Если допустимо хранить матрицу системы, быстрее всего будет 

решать задачу традиционным МГЭ в сочетании с итерационным мето-

дом решения СЛАУ (см. рис. 6). Прямой метод решения СЛАУ в тра-

диционном МГЭ дает выигрыш по сравнению с МГЭМР на сетках до 

1000 граничных элементов (это число, в первую очередь, зависит от 

архитектуры вычислительной машины и точности решения СЛАУ) и 

может быть использован как более надежный, чем итерационный, в 

том числе при решении нелинейных задач. Объемные интегралы и 

решение задачи всегда выгоднее вычислять быстрым методом. 

Заключение. В статье выполнен сравнительный анализ традици-

онного и быстрого мультипольного методов граничных элементов 

для решения уравнений Лапласа и Пуассона. Комбинируя представ-
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ленные методы, можно достичь существенного (на порядок при от-

сутствии объемных источников и на два порядка при их наличии) 

ускорения расчета без потери точности. 
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