doi: 10.18698/2309-3684-2018-3-114132
Разработанная авторами ранее общая асимптотическая теория тонких многослойных оболочек применяется для случая цилиндрических оболочек. Представлены соотношения в явной аналитической форме для всех шести компонент тензора напряжений в тонкой многослойной упругой цилиндрической оболочке, в виде зависимости от деформаций, искривлений срединной поверхности оболочки, а также их производных по продольным координатам. Полученные формулы позволяют рассчитывать все распределения компонент тензора напряжений по толщине в цилиндрической оболочке после того, как найдено решения двумерной задачи теории оболочек типа Кирхгофа-Лява. Приведен пример расчета напряжений в цилиндрической композитной оболочке при осесимметричном изгибе давлением. Для вычисления напряжений по этим формулам требуется лишь дифференцирование перемещений – прогиба и двух перемещений срединной поверхности оболочки, для которых получено аналитическое решение.
[1] Ляв А. Математическая теория упругости. Москва, ОНТИ, 1935, 674 с.
[2] Тимошенко С.П., Войновский-Кригер С. Пластинки и оболочки: пер. с англ. Москва, Наука, 1966, 635 с.
[3] Васильев В.В. Механика конструкций из композиционных материалов. Москва, Машиностроение, 1988, 272с.
[4] Григолюк Э., Куликов Г.М. Обобщенная модель механики тонкостенных конструкций из композитных материалов. Механика композитных материалов, 1988, 4, с. 698–704.
[5] Kohn R.V., Vogelius M. A new model of thin plates with rapidly varying thickness. Int. J. Solids and Struct, 1984, pp. 333–350.
[6] Gruttmann F., Wagner W. Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross–sections. Computational mechanics, v.27. 2001, pp.199-207.
[7] Ghugal Y.M., Shmipi R.P. A review of refined shear deformation theories for isotropic and anisotropic laminated beams. Journal of Reinforced Plastics and Composites, vol. 20, no. 3, 2001, pp. 255-272.
[8] Francesco T. Free vibrations of laminated composite doubly-curved shells and panels of revolution via the GDQ method. Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 931–952.
[9] Зверяев Е.М., Макаров Г.И. Общий метод построения теорий типа Тимошенко. ПММ, 2008, т. 72, вып. 2, с. 308–321.
[10] Шешенин С.В. Асимптотический анализ периодических в плане пластин. Изв. РАН. МТТ, 2006, № 6, с. 71–79.
[11] Назаров С.А., Свирс Г.Х., Слуцкий А.С. Осреднение тонкой пластины, усиленной периодическими семействами жестких стержней. Математический сборник, 2011, т. 202, № 8, c.41-80.
[12] Димитриенко Ю.И. Асимптотическая теория многослойных тонких пластин. Вестник МГТУ им Н Э Баумана. Сер Естественные науки, 2012, №3, с. 86–100.
[13] Димитриенко Ю.И., Яковлев Д.О. Асимптотическая теория термоупругости многослойных композитных пластин. Механика композиционных материалов и конструкций, 2014, т.20, № 2, с. 260-282.
[14] Димитриенко Ю.И., Юрин Ю.В., Губарева Е.А. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, № 4, с.36-57.
[15] Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, № 1, с. 36−57.
[16] Димитриенко Ю.И., Губарева Е.А., Шалыгин И.С. Теория тонких оболочек, основанная на асимптотическом анализе трехмерных уравнений теории упругости. Инженерный журнал: науки и инновации, 2015, №5.
[17] Димитриенко Ю.И., Губарева Е.А., Юрин Ю.В. Расчет полного тензора напряжений в тонких моноклинных композитных оболочках на основе метода асимптотической гомогенизации. Инженерный журнал: наука и инновации, 2016, №12.
[18] Димитриенко Ю.И., Губарева Е.А., Яковлев Д.О. Асимптотическая теория вязкоупругости многослойных тонких композитных пластин. Наука и образование. Электронное научно-техническое издание, 2014, № 10. doi: 10.7463/1014.0730105.
[19] Yu. I. Dimitrienko, I. D. Dimitrienko and S.V. Sborschikov Multiscale Hierarchical Modeling of Fiber Reinforced Composites by Asymptotic Homogenization Method. Applied Mathematical Sciences, Vol. 9, 2015, no. 145, 7211 7220
[20] Dimitrienko Yu.I., Dimitrienko I.D. Modeling of the thin composite laminates with general anisotropy under harmonic vibrations by the asymptotic homogenization method. Journal for Multiscale Computational Engineering. 2017 . № 15(3), pp. 219-237
[21] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 4: Основы механики твердого тела. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2013, 624 с.
[22] Димитриенко Ю.И. Тензорное исчисление. Москва, Высшая школа, 2001. 576 с.
Димитриенко Ю.И., Губарева Е.А., Пичугина А.Е. Моделирование напряжений в тонких композитных цилиндрических оболочках на основе асимптотической теории. Математическое моделирование и численные методы, 2018, № 3, с. 114–132.
Количество скачиваний: 740