#### 629.78 Mathematical modelling of deployment of large-area solar array

##### Bushuev A. Y. (Bauman Moscow State Technical University), Farafanov B. A. (Bauman Moscow State Technical University)

###### MATHEMATICAL MODELLING, CABLE DEPLOYMENT SYSTEM, MULTYBODY STRUCTURE, SOLAR ARRAY

doi: 10.18698/2309-3684-2014-2-101114

We have built a mathematical model for deployment of multibody solar array with a cable system of deployment. On the basis of analysis of the kinematic scheme of deployment system we have chosen the dimensions of the radii of the rollers and gear ratio of the two types of gear mechanisms which provide the preset sequence of fixation of sections. We used Lagrange equation of the second kind for studying deployment of the solar battery array. A distinctive feature of this approach is application of iterative method for taking into account deformation of the cables of synchronizing system. The mathematical model can be used to choose optimal design factors and deployment system performance requirements. It is also valuable for dealing with worst-case situations and verifying the reliability of deployment procedure.

[1] Bakunin D.V., Borzykh S.V., Ososov N.S., Shchiblev Yu.N. Matematicheskoe Modelirovanie. Mathematical Modelling, 2004, no. 6, vol. 16, pp. 86–92.
[2] Il’yasova I.G. Vestnik Samarskogo Gosudarstvennogo Aerokosmicheskogo Universiteta im. Akademika S.P. Koroleva — Korolev Samara State Aerospace University Bulletin, 2012, no. 4(35), pp. 88–93.
[3] Krylov A.V., Churilin S.A. Vestnik MGTU im. N.E. Baumana. Seriya Mashinostroenie — Heraldof the Bauman Moscow State Technical University. Mechanical Engineering, 2011, no. 1, pp. 106–11.
[4] Yudintsev V.V. Polet. Flight, 2012, no. 5, pp. 28–33.
[5] Panichkin V.I. Izvestiya AN SSSR – Proceedings of the Academy of Sciences of the USSR, 1992, no. 4, pp. 183–190.
[6] Zarubin V.S., Kuvyrkin G.N. Matematicheskoe Modelirovanie i Chislennye Metody. Mathematical Modeling and Numerical Methods, 2014, no. 1, pp. 5–17.
[7] Yudintsev V.V. Dinamika sistem tverdykh tel. Dynamics of Solid Bodies Systems. Samara, 2008.
[8] Roy Featherstone Rigid Body Dynamics Algorithms. Springer Science+Business Media, LLC, 2008.
[9] Aslanov V., Kruglov G., Yudintsev V. Newton–Euler equations of multibody systems with changing structures for space applications. Acta Astronautica, 2011. doi:10.1016/j.actaastro.2010.11.013.
[10] Vereshchagin A.F. Inzhenernaya kibernetika. Engineering Cybernetics, 1974, issue 6, pp. 65–70.
[11] Mengali G., Salvetti A., Specht B. Multibody Analysis of Solar Array Deployment using Flexible Bodies. Universita di Pisa, Facoltà di Ingegneria Corso di Laurea in Ingegneria Aerospaziale, 2007.
[12] Lakshmi Narayana В., Nagaraj В.Р., Nataraju В.S. Deployment Dynamics of Solar Array with Body Rates. Materials of International ADAMS User Conference, 2000.

Bushuev A., Farafanov B. Mathematical modelling of deployment of large-area solar array. Маthematical Modeling and Coтputational Methods, 2014, №2 (2), pp. 101-114