539.3 Simulation of the interaction process of a high-speed projectile with a three-layer spaced combined barrier

Dobritsa B. T. (Bauman Moscow State Technical University), Pashkov S. V. (Томский государственный университет), Dobritsa D. B. (АО "НПО им. С.А. Лавочкина")

HIGH-SPEED IMPACT, CLOUD OF FRAGMENTS, SPACED BARRIER, FRAGMENTATION, MESH BUMPER, NUMERICAL SIMULATION


doi: 10.18698/2309-3684-2018-1-7089


The article describes the numerical study of the process of a high-speed projectile interaction with the spaced combined barrier including mesh bumpers which was carried out using the author's numerical realization in a Lagrangian 3D formulation on tetrahedral cells. There was used the deformation fracture criterion for equivalent plastic deformation to calculate contact interactions, the Johnson method and the method of bifurcation on nodes of a computational grid to describe cracks. The boundary condition of ideal sliding on a tangent and impermeability on a normal was used for fragments and contact surfaces. The protective properties of a three-layer spaced barrier with two layers of mesh protection were evaluated in a wide range of impact velocities simulating the effects of micrometeorites and fragments of orbital debris on the structures of spacecraft meteoric protection. High performance of protective mesh bumpers and their advantage in comparison with bulk bumpers are shown. A technique for simulating high-speed impact on the spaced barriers allowing reducing the calculation time for long distances between layers is described.


[1] Inter-Agency Space Debris Coordination Committee. Protection manual. IADC- 04-03. Version 3.3. Revision April 04, 2004. Available at: http://www.iadconline.org/Documents/IADC-04-03_Protection_Manual_v7.pdf
[2] Christiansen E.L. Advanced Meteoroid and Debris Shielding Concepts. AIAA Paper № 90-1336, AIAA/NASA/DOD Orbital Debris Conference: Technical Issues and Future Directions, Baltimore, MD, April 16–19, 1990.
[3] Christiansen E.L., Kerr J.H. International Journal of Impact Engineering, 1993, vol. 14, pp. 169–180.
[4] Shumikhin T.A., Bezrukov L.N., Myagkov N.N. Mekhanika kompozitsionnykh materialov i konstruktsiy — Mechanics of Composite Materials and Structures, 2007, vol. 13, no. 3, pp. 341–355.
[5] Horz F., Cintala M.J., Bernhard R.P., See T.H. International Journal of Impact Engineering, 1995, vol. 17, pp. 431–442.
[6] Shumikhin T., Semenov A., Bezrukov L., Malkin A., Myagkov N., Kononenko M. On fragmentation of aluminum projectile on mesh bumpers. Proceedings of the Fourth European Conference on Space Debris, ESA/ESOC, 18–20 April 2005, Darmstadt, Germany, pp. 471476.
[7] Myagkov N.N., Shumikhin T.A. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo — Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4 (4), pp. 1648–1650.
[8] Myagkov N.N., Shumikhin T.A. Mekhanika kompozitsionnykh materialov i konstruktsiy — Mechanics of Composite Materials and Structures, 2011, vol. 17, no. 3, pp. 306–319.
[9] Pashkov S.V. Chislennoe modelirovanie fragmentatsii tolstostennykh tsilindricheskikh obolochek pri vzryvnom nagruzhenii. Avtoreferat diss. cand. tekhn. nauk. [Numerical simulation of thick-walled cylindrical shell fragmentation under explosive loading. Cand. eng. sc. diss. Abstract]. Tomsk, 2000, 20 p.
[10] Gerasimov A.V., Pashkov S.V. Khimicheskaya fizika — Russian Journal of Physical Chemistry B: Focus on Physics, 2005, vol. 24, no. 11, pp. 1–7.
[11] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum Mechanics. In 4 volumes. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[12] Dimitrienko Yu.I., Dimitrienko I.D. Inzhenernyy zhurnal: Nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, no. 5 (29). Available at: http://engjournal.ru/search/author/40/page1.html
[13] Dimitrienko Yu.I., Gubareva Е.А., Sborschikov S.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 2 (10), pp. 3–24.
[14] Orlenko L.P., ed. Fizika vzryva. V 2 tomakh [Explosion physics. In 2 volumes]. Moscow, Fizmatlit Publ., 2004.
[15] Wilkins M.L. Calculation of Elastic-Plastic Flow. In: Methods in Computational Physics. Volume 3. Fundamental Methods in Hydrodynamics. Alder B., ed. New York, London, Academic Press Publ., 1964, 393 p. [In Russ.: Wilkins M.L. Rashchet uprugoplasticheskikh techeniy. Vychislitelnye metody v gidrodinamike. Moscow, Mir Publ., 1967, pp. 212–263].
[16] Wilkins M.L. Computer simulation of dynamic phenomena. Berlin, Heidelberg, New-York, Springer Publ., 1999. 246 p.
[17] Fomin V.M., Gulidov A.I., Sapozhnikov G.A. et al. Vysokoskorostnoe vzaimodeystvie tel [High-speed interaction of bodies]. Novosibirsk, SO RAN Publ., 1999, 600 p.
[18] Johnson J.N. Journal of Applied Physics, 1981, vol. 52, no. 4, pp. 2812–2825.
[19] Steinberg D.J., Cochran S.G., Guinan M.W. Journal of Applied Physics, 1980, vol. 51, no. 3, pp. 1496–1504.
[20] Johnson G.R., Colby D.D., Vavrick D.J. International journal for numerical methods in engineering, 1979, vol. 14, no. 12, pp. 1865–1871.
[21] Johnson G.R. Journal of Applied Mechanics, 1981, vol. 48, no. 1, pp. 30–34.
[22] Gerasimov A.V., Dobritsa D.B., Pashkov S.V., Khristenko Yu.F. Kosmicheskie issledovaniya — Cosmic Research, 2016, vol. 54, no. 2, pp. 126–134.
[23] Sokolov V.G., Christiansen E., Gorbenko A.V., Feldstein V.A., Romanchenkov V.P., Panichkin N.G., Yachlakov Yu.V., and Zinchenko L.V. The effect of thin deployable construction elements of the International Space Station on the probability of its hull penetration by meteoroids and space debris. Hypervelocity Impact Symposium, Galveston, Texas, November, 2000.
[24] Burt R., Christiansen E.L., Kerr J.H. Calibration of proposed RSC “Energia” SM ballistic limit equation including semi-transparent shadowing barriers. JSC 28509, HITF report, Johnson Space Center, NASA, May 2001.


Добрица Б.Т., Добрица Д.Б., Пашков С.В. Моделирование процесса взаимодействия высокоскоростного ударника с трехслойной разнесенной комбинированной преградой. Математическое моделирование и численные методы, 2018, № 2, с. 70-89.



Download article

Количество скачиваний: 586