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Проведено численное исследование процесса взаимодействи� высокоскоростного
ударника с разнесенной комбинированной преградой включающей сеточные экра
ны с помощью авторской численной реализации в лагранжевой постановке на
тетраэдрических �чейках При исследовании примен�лс� деформационный крите
рий разрушени� по эквивалентной пластической деформации метод Джонсона
дл� расчета контактных взаимодействий и метод раздвоени� расчетной сетки по
узлам дл� описани� трещин Дл� осколков и контактных поверхностей использова
лись граничные услови� идеального скольжени� по касательной и непротекани� по
нормали Проведена оценка защитных свойств трехслойной разнесенной преграды
с двум� сло�ми сеточной защиты в широком диапазоне значений скоростей удар
ных воздействий имитирующих воздействие микрометеоритов и фрагментов ор
битального мусора на конструкции метеорной защиты космических аппаратов
Продемонстрированы высокие защитные свойства сеточных экранов и их пре
имущества перед сплошными экранами Описана методика моделировани� высо
коскоростного взаимодействи� с разнесенными преградами позвол�юща� сокра
тить врем� расчета дл� больших межпреградных рассто�ний

�лючев�е слова: высокоскоростное соударение облако осколков разнесенна� пре
града разрушение сеточный экран численное моделирование

�ведение Задачи исследования процессов высокоскоростного со-
ударения ударника с преградой актуальны для широкого ряда техни-
ческих приложений, например, при разработке и оптимизации защиты
космического аппарата (КА) от фрагментов орбитального мусора
и метеорных частиц. Размещение перед корпусом тонких многослой-
ных экранов, дробящих высокоскоростные частицы на фрагменты, 
уменьшает вероятность его пробоя. Замена сплошной пластины на
сетку из высокопрочного материала в таком экране уменьшает массу
защитной конструкции, что немаловажно для КА. Численное модели-
рование взаимодействия ударника с преградой является необходимым
дополнением экспериментальных тестов и инженерных подходов при
анализе метеорно-техногенной опасности полета КА. 

�спользование экранов из проволочной сетки для улучшения ра-
ботоспособности защитных экранов в космонавтике практиковалось
на американском сегменте МКС и в некоторых других проектах [1].  
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В работе [2] приведены результаты серии экспериментов, в кото-
рых оценивалась способность различных экранов влиять на степень
дробления ударника, причем эффективной оказалась защитная кон-
струкция из алюминиевых сеток и сплошного экрана, разнесенных на
небольшое расстояние. В работе [3] на основе экспериментальных
тестов разнесенной четырехслойной конструкции, наружным слоем
в которой являлась проволочная алюминиевая сетка, получены бал-
листические уравнения для такого экрана и показано, что сочетание
сетки и сплошных пластин позволяет уменьшить массу защитной сис- 
темы на 30…40 % по сравнению с массой стандартной конструкции
(щит Уиппла), состоящей из двух сплошных стенок. Эксперименты
по высокоскоростному внедрению полиэтиленового ударника разме-
ром 15 мм в стальной струнный экран (диаметр проволоки  = 
= 0,5…1,0 мм) проведены в работе [4], где экспериментально обосно-
вано качественное отличие характера разрушения ударника при его
взаимодействии со струнным экраном от разрушения на сплошном
экране. В работе [5] приведены результаты, полученные при исследо-
вании характера высокоскоростного дробления ударников на прегра-
дах, причем испытывались как одиночные сетки, так и последователь-
ности взаимодействующих с ударниками сеток со сплошной задней
стенкой. Серия экспериментов по дроблению алюминиевых ударников
на стальных сетках [6] показала зависимость формы фрагментации
ударника от геометрических параметров сеток. В работе [7] представ-
лены результаты экспериментов по оценке стойкости струнных и се-
точных экранов к высокоскоростному (1,7…3,8 км/с) воздействию. 
�спользовались сферический ударник диаметром 6,35 мм из алюми-
ниевого сплава и сферический полиэтиленовый ударник диаметром
15 мм; защитные конструкции представляли собой струнный или се-
точный экран, а также два струнных экрана. Моделирование прово-
дилось методом SPH в программной среде LS-DYNA. В работе [8] 
экспериментальными и численными методами исследовались осо-
бенности разрушения алюминиевых и полиэтиленовых ударников на
сетке из стальных струн при скорости воздействия около 3 км/с.  

В перечисленных работах в качестве ударников использовались
достаточно крупные частицы, однако в инженерном плане для совер-
шенствования способов защиты уязвимых конструкций КА наиболее
интересны результаты экспериментов и численного моделирования
для частиц диаметром 2 мм и менее, в диапазоне значений скоростей
2,5…3,5 км/с и более.  

�меющиеся коммерческие программные пакеты, предназначен-
ные для анализа защиты КА от высокоскоростных воздействий час- 
тиц космического мусора (например, инструмент моделирования
AutoShield [1]), оснащены численными решателями методами SPH  
и лагранжевым AUTODYN-2D, AUTODYN-3D и ориентированы на
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одиночные и многослойные экраны из сплошных пластин. В публика-
циях, посвященных численному моделированию процессов взаимо-
действия ударника с сеточными экранами, упоминаются исследования, 
которые проводились с использованием коммерческих пакетов [7]. 
Авторские программы для подобных исследований применяются
редко. 

Поскольку для наиболее распространенных микрометеоритов
в ситуации взаимодействия с сеточным экраном размеры частицы
сравнимы с диаметром проволоки и шагом сетки, при численном мо-
делировании невозможно использовать подход, при котором приме-
няются известные математические модели пористых материалов и
экран со сложной геометрической структурой (сетка) представлен
в виде пластины из пористого материала. Такой подход не учитывает
основную особенность сеточных экранов — сосредоточенное воздей-
ствие проволоки сетки на ударник, которое создает большие градиен-
ты скоростей, играющие существенную роль в разрушении ударника. 

В настоящей статье с помощью авторской численной реализации
[9, 10] исследована эффективность трехслойной разнесенной прегра-
ды, включающей сеточные экраны. В лагранжевой 3D-постановке
рассматривается процесс взаимодействия сеточных преград с ком-
пактными элементами (алюминиевыми шариками). Предложенная
модель взаимодействия высокоскоростного ударника с разнесенной
комбинированной преградой соответствует типовым вариантам ком-
поновки многослойной защиты, используемой для КА.  

Предложенный подход к численному моделированию позволяет
описать специфические особенности поведения сеточных экранов
при высокоскоростных воздействиях, а также сравнить баллистиче-
ские свойства сеточных экранов и сплошных преград.  

Основные соотношени�. Поведение материалов описывается
моделью идеальной упругопластической среды. Основы механики
деформируемого твердого тела изложены в издании [11]. Математи-
ческая формулировка динамической задачи взаимодействия ударника
и преграды приведена в работе [12].  

Система уравнений, описывающая движение сплошной среды, 
базируется на законах сохранения массы, импульса и энергии [13–17] 
и имеет следующий общий вид: 

� уравнение неразрывности среды

, 0,r +r =&                                           (1) 

� уравнение движения

,

1
,= + s

r
&                                        (2) 
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� уравнение энергии

,r = s e + r
r

& & &                                     (3) 

где r  — текущая плотность среды;  — компоненты вектора скоро-

сти материальной частицы;  — компоненты вектора массовых сил; 

s  — тензор напряжений;  — удельная (на единицу массы) внут-

ренняя энергия; e  — тензор деформаций;  — давление. 

К этим уравнениям добавляются уравнения, которые учитывают
термодинамические эффекты, связанные с адиабатным сжатием сре-
ды и прочностью среды. Это необходимо для замыкания системы
уравнений, описывающей движение прочной сжимаемой среды. 

Тензор скоростей деформаций имеет вид

, ,

1
.

2
e = +&                                    (4) 

Тензор напряжений

,s = -d +                                     (5) 

где d  — символ Кронекера;  — девиатор тензора напряжений, 

отвечающий за реакцию на сдвиговое формоизменение материальной
частицы. 

Уравнение состояния выбиралось в форме Ми — Грюнай- 
зена [16-18]: 

0

2
0 0

0 02
; 1 2 ; ,

1

; ,

r x
= + = - g x = g r -

- x

= + = - �

         (6) 

где  = ,r  — давление как функция текущей плотности и энер-

гии [17]; ,= r  — холодная и тепловая составляющие давле-

ния; 0r  — начальная плотность; ,  — постоянные материала; 

1 ;x = - 0= r r  — относительный объем; g0 — коэффициент

Грюнайзена; ,  — холодная и тепловая составляющие внутрен-

ней энергии (см. уравнение (3)). 
Для описания сопротивления тела сдвигу использовались соот-

ношения Прандтля — Рейсса [17]: 
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2 ,+ l = m & 3= e -e d& &&                            (7) 

при условии пластичности Губера — Мизеса

2
02 3,�                                             (8) 

где m  — второй параметр Ламе (модуль сдвига); &  — компоненты де-

виатора скоростей деформаций; 0  — динамический предел текучести. 

Для определения скалярного множителя l используется известная про-
цедура приведения к кругу текучести. Как показано в работе [15], это
эквивалентно решению полных уравнений Прандтля — Рейсса. 

Материальная частица, двигаясь вдоль своей траектории, может
вращаться как жесткое целое, что учитывается производной Яуман- 
на [11]: 

,= -w -w& , ,

1
,

2
w = -                (9) 

где w  — тензор скоростей вращения. 

В уравнениях (1)–(9) использованы общепринятые обозначения: 

, , 1, 2, 3 ;= по повторяющимся индексам выполняется суммиро-

вание; точка над символом — производная по времени; индекс после
запятой — производная по соответствующей координате. 

�звестно, что пластические деформации, давление и температура
влияют на предел текучести и модуль сдвига, поэтому модель была
дополнена соотношениями, предложенными в работе [19]. В уравне-
ние состояния для напряжения текучести включаются следующие

параметры: эквивалентная пластическая деформация ,e температу-

ра материала и давление в нем. Когда напряжение текучести из-
меняется как функция параметров состояния среды, следует также
учитывать изменение значения модуля сдвига. 

Уравнение состояния для напряжения текучести по модели
�тейнберга — Гуинана задается выражением [16, 19] 

0 1/31 1 300� �= +be + - -� �                    (10) 

при условиях

0
max1 ,+be � 0= при ;> 02 12/3

0 .
g -

=     (11) 

Модуль сдвига m определяется выражением

1/3
0 1 300 .� �m = m + - -� �                             (12) 
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В формулах (10)–(12) 0, max, b, , m0, , , 0 и g0 являются кон-
стантами материала. 

Температура материала определяется из выражения [16] 

0
0

1
;

3

� �
= - e� �

r� �
                                      (13) 

2 3 4
0 00 01 02 03 04 .e = e + e d + e d + e d + e d                       (14) 

Здесь 00 900;= -e 00 01 02 03 04, , , ,e e e e e  — константы материала; 

0 .d = r r

В качестве критерия разрушения при интенсивных сдвиговых
деформациях использовалось достижение эквивалентной пластиче-

ской деформацией e  своего предельного значения *e  [14, 17]: 

,*e = e e < e� & &

где e&  — пластическая составляющая компонент тензора скоростей

деформаций.  
Для описания трещин использовался метод раздвоения расчетной

сетки по узлам — при выполнении в окрестности узла условия раз-
рушения происходит расщепление узлов и образование поверхности
разрушения. 

Для расчета упругопластических течений использовалась мето-
дика, реализованная на тетраэдрических ячейках и базирующаяся на
совместном применении метода Уилкинса [15, 16] для расчета внут-
ренних точек тела и метода Джонсона [20, 21] для расчета контакт-
ных взаимодействий. Разностная схема в трехмерной реализации и ее
физическая интерпретация приведены в работах [16, 17]. 

Начальные неоднородности структуры моделировались распреде-
лением эквивалентной пластической деформации по ячейкам расчет-
ной области с помощью генератора случайных чисел, который выдает
случайную величину, подчиняющуюся выбранному закону распреде-
ления. Плотности вероятности случайных величин были взяты в фор-
ме нормального гауссовского распределения со средним арифметиче-
ским, равным табличному значению, и с варьируемой дисперсией. 

Начальные условия, записанные для -го тела при 0= в счетной

области , , где =  — радиус-вектор материальной части-

цы, имеют вид [17] 

0, 0 ;r = r 0, 0 ;=  0;= e = s =  0,= =   (15) 
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где 0 ,r 0  — заданные начальные распределения плотности

материала и вектора скорости. 
Граничные условия: 

� на свободных поверхностях

0;ts = s =                                             (16) 

� на поверхности контакта в условиях идеального скольжения
и непроникания (для сжимающих напряжений) 

1 2 ,s = s 1 2 ,= 1 2 0,t ts = s =                            (17) 

где ,s ts  — нормальная и касательная компоненты вектора напря-

жений;  — нормальная компонента вектора скорости в точке кон-

такта; индексы 1 и 2 относятся к контактирующим телам.  
Таким образом, требуется в любой момент времени 0> найти

функции , , ,x , ,r ,s и , , удовлетворяю-

щие в областях ,x уравнениям (1)–(9), начальным данным (15) 

и согласованным граничным условиям (16), (17) на свободных и кон-
тактных поверхностях.  

Метод численного решени�. При численном решении системы
уравнений (1)–(9) вычислительный процесс организуется следующим

способом [17]. Области , 0 ставится в соответствие счетная об-

ласть, в которой задается конечное множество точек — узлов. Счет-
ная область покрывается ячейками сетки (в предложенной модели
используется тетраэдрическая сетка). Вершины ячеек являются узла-
ми сетки. В узлах определяются ускорения, компоненты векторов
скорости и координат. Плотность, внутренняя энергия, компоненты
тензоров напряжений и скоростей деформаций определяются в ячей-
ках и относятся к геометрическим центрам ячеек.  

В основе метода Уилкинса лежит схема «крест» с искусственной
вязкостью. Расчет осуществляется путем перехода от известного со-

стояния задачи на момент времени к состоянию на момент време-

ни 1+ и повторяется до получения полной картины движения на за-
данном интервале времени. 

Для построения разностной схемы необходимо аппроксимиро-
вать частные производные по пространственным переменным. �з
формулы Остроградского — Гаусса имеем [17] 

0

1
lim ,
�

�F
= F �

� ���                             (18) 
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где F  — скалярная функция в объеме ;  — декартова координата; 

,  — некоторый объем и ограничивающая его кусочно-гладкая по-
верхность; ,  — вектор внешней нормали к поверхности и еди-

ничный вектор вдоль оси соответственно;  — элемент поверх-

ности . 
В трехмерном случае для тетраэдрической ячейки объем вычис-

ляется по формуле

12 13 14

1
,

6
u = � �

где векторы расположены на ребрах тетраэдра и тройка 12 13 14, ,

правая.  
Масса ячейки в начальный момент времени используется в даль-

нейшем для нахождения текущей плотности (на момент времени ) 
из соотношения

0 0 const,= r u = r u =

где ,u r  — текущие объем и плотность ячейки. 

С использованием соотношения (18) для ячейки компоненты тен-
зора скоростей деформаций определяются следующим образом: 

1 2
, ,1 , 2 , 3 ,123 ,1 , 2 , 4 ,1241 2

1

6

+
+

�= + + + + + +
�u

1 2

,1 , 3 , 4 ,134 , 2 , 3 , 4 , 234 ,
+

�+ + + + + +
�

где , 1, 2, 3 ,= ,  — скорости движения в узлах 1…4 ячейки (  — 

номер ячейки); u  — текущий объем ячейки; , 2Vxz zV xV= � �  — 

проекция площади соответствующей грани тетраэдра на единичный
вектор оси .

Компоненты тензора скоростей деформаций в ячейках определяют-
ся по формуле (4), девиатор скоростей деформаций — по формуле (7).  

Девиатор тензора напряжений определяется из следующих раз-
ностных соотношений: 

1 2 1 22 ;* + += + m D + w +w D&

1 ,+ *= если 2
02 3,* * � и

01 2 3
,

*
+

* *
= если 2

02 3;* * >

значения w определяются по формуле (9). 
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Здесь *  — расчетные значения компонент девиатора напряже-

ний (до корректировки). 
Приращение эквивалентной пластической деформации

1
2 3,

+
e = e e& & &

где
1

*1
.

2

+
e = -

m
&

Давление и удельная внутренняя энергия в ячейке вычисляются
следующим образом: 

1 1 1 1;+ + + += r + r

1 1 1 2

1

1 1

0,5
,

1 0,5

+ + +

+

+ +

� �- r + + - + D
� �

=
+ r -

где ,r r  — функции относительного объема ячейки; 

1 2 1 21

2
+ -= -  — искусственная вязкость в ячейке, которая

вычисляется через изменение удельного объема и может быть пред-
ставлена в виде суммы квадратичной и линейной составляющей; 

1 0 1 ;+ += r r  
1 21 2 1 2 ++ +D = De&  — приращение энергии

сдвиговых деформаций [16, 17].  
Формула для расчета комбинированной искусственной вязкости, 

вычисляемой в центре ячейки, имеет вид

1 2 2 2 2
0 ,+ = r e + r e& &  0= при 0,e �&            (19) 

где e&  — скорость деформации в направлении ускорения: 

1 2

,1 2 .

+

+
� �

e = � �� �d� �

&                               (20) 

В формулах (19), (20) 0 2,@  1@  — константы; 3 1 2+= u  — 

размер ячейки; = � �r  — местная скорость звука ( , r  — давле-

ние и плотность в ячейке); 1 2 1 2 1 2+ + -= -  — компоненты уско-

рения в ячейке.  
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Соотношения для компонент скорости узлов при отсутствии
внешних сил, что задается граничными условиями, имеют вид [17] 

1
,

2
= �& ,j = j� 4,j =

где  — компоненты вектора сил, действующих на -й узел ячейки

за счет внутренних напряжений; 1, 2, 3 ;= индекс означает сум-

мирование по всем ячейкам, содержащим -й узел. 
Структура внутренней силы для -го узла тетраэдрической

ячейки определяется по формуле

3

1

,
=

� �
= s =� �

� �
�

где  — площадь противолежащей грани тетраэдра; s  — компо-

ненты тензора напряжений;  — внешняя нормаль к соответствую-

щей грани. 
Значение вектора скорости для -го узла

1 2 1 2 .+ -= + D&

Координаты узлов пересчитываются по формулам

1 1 2 1 2;+ + += + D& 1 2 11
.

2
+ += +

Условие устойчивости представляет собой видоизмененную фор-
му условия Неймана — Рихтмайера [16] и задается соотношением

1
3 2

2 21

/ 2
,min

3

+
+

� �

� �
� �D =
� �

+� �

3 2 1 21,1 .+ +D � D

Здесь  — общее количество ячеек; 1+  — минимальная толщина

-й ячейки сетки, определенная как 1 1 1
max

+ + += u 1( +u  — объем

-й ячейки; 1
max
+  — площадь самой большой стороны -й ячейки); 

 — местная скорость звука в -й ячейке, вычисленная как

1

1
;

+

+

-
= � �r =

r -r
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задается выражением

2 1 1 2
08 ,+ += + e&

где 2
0 ,  — квадратичная и линейная константы для вычисления

искусственной вязкости (19); 1 2+e& вычисляется по формуле (20).  

На целом временном слое проводится усреднение: 

1 3 2 1 2 2.+ + +D = D + D

�сходные данные дл� численного моделировани�. Задача
оценки стойкости комбинированной преграды моделировалась в виде
взаимодействия высокоскоростного (2…15 км/с) ударника с трех-
слойной разнесенной преградой, имитирующей стенку корпуса КА
с двумя защитными экранами из тканой сетки со стальной проволо-
кой. Внешняя сетка изготовлена из более толстой проволоки (диа-
метр проволоки  = 0,32 мм, шаг сетки 0,5 мм), внутренняя — из бо-
лее тонкой (диаметр проволоки  = 0,2 мм, шаг сетки 0,356 мм).  

Ударник моделировался в виде алюминиевого шарика диаметром
2 мм, который по плотности примерно соответствует наиболее рас-
пространенным метеоритам (хондритам). Выбор материала ударника
был обусловлен привязкой к экспериментальным данным [22].  

При проведении расчета использовались следующие константы
материалов [16].  

Алюминий (ударник, задняя стенка):  

� 3
0 2,78 г/см ,r = 0 0,53 см мкс ,= 1,34,= 0 2,00g =  (парамет-

ры уравнения состояния (6)); 

� 0 32,90 10 Мбар,-= � 3
max 6,80 10 Мбар,-= � 21, 25 10 ,b = � =

11,00 10 ,-= � 08,00 10 ,= � 46, 20 10 ,-= � 3
0 1,22 10 K,= � 0m =

12,76 10 Мбар-= �  (параметры модели �тейнберга — Гуинана для

уравнений (10)–(12); 

� 3
00 2,773 10 ,-e = - � 3

01 5,547 10 ,-e = - � 1
02 1,364 10 ,-e = � 03e =

12, 495 10 ,-= � 1
04 3,160 10-e = �  (параметры для уравнений (13), (14)). 

Сталь (сеточные преграды): 3
0 7,90 г/см ,r = 0 0,46 см мкс ,=

1,49,= 0 2,17;g = 0 33, 40 10 Мбар,-= � 2
max 2,00 10 Мбар,-= � b =

14,00 10 ,= � 13,50 10 ,-= � 03,00 10 ,= � 44,50 10 ,-= � 3
0 1,93 10 K,= �

1
0 7,7 10 Мбар,-m = � 3

00 1,340 10 ,-e = - � 3
01 2,908 10 ,-e = - � 02e =

11,012 10 ,-= � 1
03 2,051 10 ,-e = � 1

04 2,901 10 .-e = �
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Для приведенных констант давление по уравнению (6) находится
в мегабарах, удельная внутренняя энергия в гигаджоулях на кубиче-

ский метр
3

100 ГДж
1Мбар .

м

� �
=� �

� �
Величины , m в выражениях (10), 

(12) находятся в мегабарах. 
Проволочная сетка моделировалась крест-накрест уложенными

отрезками проволоки соответствующего диаметра с жестким закреп-
лением концов проволоки (рис. 1).  

Рис Схема для моделирования пробоя первой преграды: 

а — 3D-конфигурация; б — 2D-разрез

Третий слой разнесенного экрана моделировался алюминиевой
пластиной толщиной 1,85 мм (аналог типовой стенки корпуса топ-
ливного бака КА), со свободными граничными условиями на торцах.  

Анализ результатов численного моделировани�. В связи со
значительным по сравнению с размерами ударника разнесением пре-
град расчет был разделен на этапы. На первом этапе моделировался
пробой ударником первой преграды (рис. 2).  

Рис Пробой ударником первой преграды в различные моменты времени
(начальная скорость ударника 5 км/с): 

а — 0,200 мкс; б — 0,296 мкс; в — 0,400 мкс
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После пробоя первой преграды, на момент преодоления осколоч-
ным облаком межпреградного расстояния, отключался расчет напря-
женно-деформированного состояния и контактных взаимодействий, 
выполнялось усреднение скоростей у отдельных осколков и модели-
ровалось движение их с индивидуальной усредненной скоростью до
момента контакта со следующей преградой. При подлете облака
осколков к следующей преграде выделялось достаточно компактное
ударное ядро (неразрушенная часть ударника и окружающие его
осколки) и значительно разреженное поле мелких осколков, разлета-
ющихся в стороны. Поскольку компактное ударное ядро представля-
ет собой основную угрозу для преграды, разлетающиеся по сторонам
мелкие осколки также исключались из расчета для его ускорения
(рис. 3).  

Рис Преодоление ударным ядром межпреградного расстояния от первой до вто-
рой преграды (начальная скорость ударника 3 км/с): 

а — окончание пробоя первой преграды,  = 0,88 мкс; б — разлет осколков с усредненными
скоростями,  = 5,5 мкс; в — из расчета исключены осколки, не имеющие отношения к удар- 

ному ядру,  = 5,5 мкс

Аналогичная схема применялась при пробое второй сеточной
преграды и при преодолении осколочным облаком межпреградного
расстояния до задней стенки (рис. 4).  

Анализируя разрушение преграды и ударника перед контактом со
второй преградой (рис. 5 и 6), можно увидеть некоторые закономер-
ности. До скоростей 2 км/с включительно разрушения ударника
практически не происходит (см. рис. 5). Степень его разрушения для
таких умеренно высоких скоростей находится практически в линей-
ной зависимости от скорости. Для умеренных скоростей (  < 10 км/с) 
разрушенная часть ударника практически полностью разлетается по
сторонам (линия розового цвета), и ее можно игнорировать. Доля
разрушенной части сетки, входящая в ядро осколочного облака, сна-
чала падает, затем выходит на асимптоту. Относительное уменьше-
ние запреградной скорости ударника практически не зависит от ско-
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рости соударения, поскольку на таких высоких скоростях прочност-
ные свойства не играют какой-либо существенной роли (в условиях, 
когда масса ударника много больше массы взаимодействующего
участка преграды) и торможение происходит в основном в соответ-
ствии с законом сохранения импульса. 

Рис Преодоление ударным ядром межпреградного расстояния от второй прегра-
ды до задней стенки (начальная скорость ударника 3 км/с): 

а — разлет осколков с усредненными скоростями,  = 22,3 мкс; б — из расчета исключены
осколки, не имеющие отношения к ударному ядру,  = 22,3 мкс

Рис Процент разрушения ударника в зависимости от его
начальной скорости перед контактом со второй преградой: 

 — после первой преграды;  — вне ядра;  — в ядре;  — после пер-
вой преграды для эквивалентной по массе сплошной преграды
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Рис Зависимость массы осколков первой преграды в ядре
относительно массы ударника от его начальной скорости

Анализируя результаты исследования сеточных преград, можно
сделать вывод, что сеточные экраны равной удельной массы с точки
зрения защиты от микрометеоритов более эффективны, чем сплош-
ные, причем степень эффективности зависит от соотношения размеров
ударника и параметров сетки (шаг сетки и диаметр проволоки).  
Основным фактором, обеспечивающим снижение пробивающей спо-
собности, является уменьшение скорости и размеров неразрушенной
части ударника. Эффективность сеточной защиты обусловлена в
первую очередь воздействием сосредоточенной массы на ударник (при
равной удельной массе преграды), поэтому максимальное дробление
ударника будет достигаться при шаге сетки, сравнимом с его радиу-
сом. В реальности размеры микрометеоритов лежат в определенном
диапазоне, и использование комбинированной сеточной преграды
(наружная сетка из более толстой проволоки с более широким просве-
том, внутренняя сетка из более тонкой проволоки с меньшим просве-
том) позволяет существенно расширить диапазон перехватываемых
размеров. 

В связи с тем что конечной целью подобных исследований являет-
ся рациональное проектирование защитных экранов (максимальная
живучесть при минимальной массе), для того чтобы определить нали-
чие угрозы защищаемому объекту, не требуется иметь полную карти-
ну процесса, достаточно оценить состояние запреградной скорости
и массы ударного ядра (неразрушенной части ударника и окружающих
его осколков). Однако поскольку задача, как правило, состоит не в
оценке стойкости конкретного экрана для определенных размера и
скорости микрометеорита, а в подборе оптимальной по массе кон-
струкции, обеспечивающей заданную живучесть при заданных ме-
теорных потоках, даже оптимизированный расчет (с обрезкой до удар-
ного ядра) довольно сложно применить для небольших диапазонов
значений скоростей, размеров ударника и типоразмеров сетки.  

Авторы считают, что перспективным направлением при развитии
данной методики может стать подход, при котором можно с доста-
точной степенью точности оценить эффективность преграды (в том
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числе многослойной и разнесенной), рассматривая каждую преграду
как отдельный оператор, изменяющий запреградную скорость, массу
неразрушенной части ударника, массу осколков и поле их скоростей. 
При расчете с использованием такой концепции очевидным образом
выявляются следующие преимущества: 

� коэффициент замедления (отношение запреградной скорости
неразрушенной части ударника к начальной) для характерных скоро-
стей микрометеоритов почти не зависит от начальной скорости и
определяется в соответствии с законом сохранения импульса; 

� при равных параметрах сетки (преграды) и ударника относи-
тельная величина разрушения ударника линейно зависит от скорости
(см. рис. 5); 

� наличие в ядре осколочного облака (помимо неразрушенной
части ударника) из мелких осколков влияет на запреградную ско-
рость, но практически не влияет на дальнейшее разрушение ударника
на последующих преградах. 

Такой подход позволит качественно сравнивать эффективность
рассматриваемых вариантов (как для сеточных преград, так и для
сплошных). Полноценные расчеты путем численного моделирования
занимают весьма продолжительное машинное время, поэтому ис-
пользование полуэмпирических функциональных зависимостей в ви-
де неких операторов, изменяющих параметры ударного ядра, позво-
лит свести моделирование к перебору вариантов с их практически
мгновенным обсчетом. В итоге в определенной степени автоматизи-
руется подбор оптимальных вариантов, что особенно важно при ана-
лизе всего критического диапазона значений скоростей и размеров
ударников. Например, подобный подход, основанный на анализе зна-
чительного массива экспериментальных данных [23, 24], применялся
при создании концепции так называемых неконформных щитов,  
т. е. защитных экранов, отделенных от структуры, которую они за-
щищают. 

Заключение Результаты численных экспериментов показали
высокую эффективность сеточной защиты при шаге сетки, сравни-
мом с размером ударника. Показано, что сеточные преграды создают
существенный градиент скоростей в ударнике, способствующий его
разрушению и уменьшению компактной массы при подлете к следу-
ющей преграде. При этом описанная методика обрезки облака оскол-
ков до ударного ядра (неразрушенной части ударника и окружающих
его осколков) позволяет существенно сократить время расчета балли-
стической стойкости разнесенной комбинированной преграды.  

�сследование выполнено при частичной поддержке Гранта
РФФ� �
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