doi: 10.18698/2309-3684-2017-4-1730
The purpose of the paper was to formulate and study the system of kinetic equations modeling the process of diffusion filtration based on a stochastic approach. Within the research we proved the theorem of existence and uniqueness of the solution with respect to the case of continuous density, obtained the solutions in uniformly convergent and asymptotic series and examined its behavior at infinity. Moreover, we considered the specific cases of density of the Delta-function type and uniform distribution. As a result, the finite-difference scheme for solving the corresponding Cauchy problem on finite time intervals is built and justified. The results of computer simulation are also given.
[1] Alexiades V., Solomon A.D. Mathematical modeling of melting and freezing. processes. Washington DC, Hemisphere Publ. Co, 1993, 323 p.
[2] Baiocchi C. Comptes Rendus de l'Académie des Sciences, Série A, 1971, vol. 273, pp. 1215–1217.Р.В. Арутюнян 30
[3] Caffarelli L.A. Archive for Rational Mechanics and Analysis, 1976, vol. 63, iss. 1, pp. 77–86.
[4] Dimitrienko Yu.I., Dimitrienko I.D. European Journal of Mechanics, B/Fluids, 2013, vol. 37, pp. 174–179.
[5] Dimitrienko Yu.I., Bogdanov I.O. Mathematical Modeling and Computational Methods, 2017, no. 2 (14), pp. 32–54.
[6] Dimitrienko Yu.I., Shpakova Yu.V., Bogdanov I.O., Sborschikov S.V. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2015, no. 12. Available at: http://engjournal.ru/catalog/msm/pmcm/1454.html (accessed October 20, 2017).
[7] Arutyunyan R.V. Nauka i obrazovanie — Science and Education, 2016, no. 4, pp. 139–155. DOI 10.7463/0416.0837747
[8] Arutyunyan R.V. Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika — Russian Electromechanics, 2015, no. 6 (542), pp. 32–38.
[9] Arutyunyan R.V., Nekrasov S.A. Sibirskie elektronnye matematicheskie izvestiya — Siberian Electronic Mathematical Reports, 2016, vol. 13, pp. 525–540.
[10] Bondarenko S.S., Borevskiy L.V., Gavich I.K., Dzyuba A.A., Zektser I.S. et al. Osnovy gidrogeologii. Gidrogeodinamika [Fundamentals of hydrogeology. Hydrogeodynamics]. Novosibirsk, Nauka Publ., 1983, 242 p.
[11] Dimitrienko Yu.I., Glazikov M.L. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2003, no. 1, pp. 59–71.
[12] Dimitrienko Yu.I., Bogdanov I.O. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2017, no. 2, pp. 3–27.
[13] Melnikova Yu.S. Nauka i obrazovanie — Science and Education, 2012, no. 2, pp. 1–19.
[14] Reznikov G.D., Zhikhar A.S. Matematicheskoe modelirovanie — Mathematical Models and Computer Simulations, 1995, vol. 7, no. 6, pp. 118–125.
[15] Savatorova V.L. Modelirovanie filtratsii zhidkosti skvoz poristuyu sredu s periodicheskoy strukturoy [Modeling of fluid filtration through a porous medium with a periodic structure]. Moscow, Gornaya kniga Publ., 2010, 62 p.
[16] Savatorova V.L. Matematicheskoe modelirovanie protsessov teploprovodnosti i filtratsii v neodnorodnykh sredakh so strukturoy, blizkoy k periodicheskoy. Diss. dokt. fiz.-mat. nauk [Mathematical modeling of heat conduction and filtration processes in inhomogeneous media with a structure close to periodic. Dr. phys. and math. sc. diss.]. Moscow, 2010, 304 p.
[17] Abramowitz M., Stegun I.A., ed. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, 1972, 1060 p. [In Russ.: Abramowitz M., Stegun I., ed. Spravochnik po spetsialnym funktsiyam. Moscow, Nauka Publ., 1979, 832 p.].
Arutyunyan R.V. Modeling of stochastic filtration processes in lattice systems. Mathematical Modeling and Computational Methods, 2017, №4 (16), pp. 17-30
Количество скачиваний: 849