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Сформулирована и исследована система кинетических уравнений, моделирующих 
процесс диффузной фильтрации на основе стохастического подхода. Доказана тео-
рема существования и единственности решения применительно к случаю непрерыв-
ной плотности. Получены представления решения в виде равномерно сходящегося 
и асимптотического рядов, изучен характер его поведения на бесконечности. Рас-
смотрены конкретные частные случаи плотности типа дельта-функции и равно-
мерного распределения. Построена и обоснована конечно-разностная схема для ре-
шения соответствующей задачи Коши на конечных интервалах времени. Приведены 
результаты моделирования на ЭВМ. 
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Введение. Моделирование фильтрации является актуальной за-

дачей естествознания и технических наук [1–13]. Большинство работ, 
посвященных исследованию этой проблемы, основаны на гипотезе 
континуальности, что ограничивает точность расчетов при большой 
дисперсии размеров частиц в фильтруемом потоке.  

В данной статье для исследования процесса зарастания отверстий 
в решетчатой структуре, выполняющей роль фильтра, использован 
стохастический подход в отличие от работы [14], где параметр по-
глощения рассчитан с помощью статистических экспериментов. Ос-
новные характеристики фильтрующей структуры в проведенном ис-
следовании находились аналитически. 

В работах [15, 16] реализуется подход Бринкмана в случае филь-
трации жидкости сквозь твердый недеформируемый пористый мате-
риал, рассматриваемый как периодическая среда, в которой выделя-
ется ряд характерных масштабов и применяется асимптотическое 
усреднение. Для каждого из масштабов формулируется система 
уравнений. Нахождение усредненных фильтрационных характери-
стик среды, а также скорости и давления жидкости сводится к реше-
нию соответствующих периодических задач на ячейке.  

В работе [17] рассмотрены задачи гидродинамики неоднородных 
пористых сред, называемых случайными полями, описаны методы 
решения соответствующих задач фильтрации, начиная с одномерных 
течений до статистического расчета фильтрационного переноса 
в средах со случайными неоднородностями. 
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Основное преимущество моделирования фильтрации на основе 
соответствующих кинетических уравнений для функции распределе-
ния вероятностей размеров отверстий фильтрационной структуры за-
ключается в том, что конечно-разностные методы более экономичны 
по сравнению с методами Монте-Карло.  

Если необходимо учитывать трехмерные эффекты, вызванные, 
в частности, налипанием частиц друг на друга, их отрывом, отраже-
нием и диффузией в тангенциальных и обратных направлениях, 
сложной топологией структуры и многими другими факторами, то 
вывод соответствующих кинетических уравнений становится затруд-
нительным, а его структура (уравнения) существенно усложняется. 
По этой причине в этом случае единственным доступным оказывает-
ся метод статистического моделирования на ЭВМ. 

Математическая модель. Рассмотрим одномерную периодиче-
скую структуру типа «решето» (рис. 1). Длина непроницаемой части 
равна двум, проницаемой (отверстие) — единице. Сквозь это «реше-
то» просеивается поток одномерных частиц (стержней) случайных 
размеров. Длина произвольного стержня z  распределена по некото-
рому закону с плотностью ( ),p z  не зависящей от времени ,t  на полу- 

интервале  0, 2 .  

 

Рис. 1. Схема процесса фильтрации в одномерной 
решетчатой структуре 

 
Примем следующие допущения. 
1. Поток частиц однороден во времени, на период «решета» в 

единицу времени падает один стержень. 
2. Падение частиц равновероятно в любую точку на периоде.  
3. Стержень проходит через отверстие, если его центр тяжести 

попадает в створ отверстия, в противном случае — прилипает к ре-
шетке. 

Со временем размер проницаемой части «решета» уменьшается 
из-за налипания стержней. 
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Задача заключается в отыскании плотностей распределения веро-
ятностей размеров отверстий и стержней на выходе из «решета» 

( , )С x t  и ( , ) z t  соответственно. 
Исходное уравнение баланса, описывающее процесс зарастания 

отверстий, имеет следующий вид: 

 

 

( , ) ( , ) ( , )

                

( , ) (1),

0, 0   0 1 , 0. , ,


         


      

in out
t

С x t t x С x t x I x t x I x t x o

t x x t
    (1) 

Здесь левая часть равенства описывает с точностью до бесконечно 
малых значений приращение за интервал времени ( , ) t t t  вероят-
ности существования отверстий с размерами в диапазоне ... ; x x x  

( , 0) ( 1)  C x x  — дельта-функция; ( , )inI x t  — плотность вероятно-

сти образования; ( , )outI x t  — заполнение отверстий шириной x  в мо- 

мент времени t  в результате падения одного стержня; (1, ) 0,inI t  

(0, ) 0outI t  0;t     — частота падения стержней на период «ре-

шета». 
Без ограничения общности результатов исследования для кон-

кретности примем 1  , а для ненулевых отверстий 0.x   Тогда 

12
( , ) ( , ) ( ) ,

3


  in

x

x
I x t x C y t P y x dy  (0, 1), x  0.t  

Здесь 
2

2( )

( ) ( )


  
y x

P y x p z dz  представляет собой вероятность суще-

ствования стержней с длинами, способными образовать из отверстия 
шириной у  отверстие размером х  (см. рис. 1). 

Множитель / 3x  — это вероятность попадания центра тяжести 
стержня на интервал длиной .x  Коэффициент 2 учитывает налипа-
ние стержней с обеих сторон отверстий. Для вычисления уходного 
члена ( , )outI x t  рассмотрим три случая возможных соотношений 

между длиной падающего стержня z  и шириной отверстия x: 
1) для случая 0  z x  для изменения размера отверстия центр 

тяжести стержня должен попасть внутрь интервала на периоде ре-
шетки длиной ;z  

2) для случая 0 2 z x  суммарная длина интервалов на периоде, 
попадание на которые приводит к уменьшению размера отверстия, 
составляет 2 ,z x  ненулевое отверстие создается с помощью ,z  
а ( ) / 2z x  на нуль-отверстие; 
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3) в случае 2 2 x z  длина соответствующего интервала равна 
,z x  где 2x  идет на создание ненулевого отверстия, а z x  — на 

нуль-отверстия. 
Таким образом, 

2 2

0 2

2
( , ) ( , ) ( ) ( ) ( ) ,

3 3 3

  
     

  
  
x x

out
x x

z z x z x
I x t x C x t P z dz P z dz P z dz x  

(0, 1), x  0.t  

Нуль-отверстие может образовываться из всех ненулевых отвер-
стиях (0 1) x  при попадании центра тяжести стержня с размерами 
z x  на интервал длиной z x  в пределах периода «решетки», по-

этому 
1 2

(0, ) ( , ) ( ) ,
3


   in

x y

z y
I t x C y t p z dzdy  0. t  

В итоге, устремляя x  и t  к нулю, с учетом выражений для 
( , )inI x t  и ( , ),outI x t  а также соответствующих начальных условий 

получаем из формулы (1) задачу Коши для системы линейных инте-
гродифференциальных уравнений 

1

( , ) ( ) ( , ) ( ) ( , ) ,


   
 

x

С
x t q x C x t P y x C y t dy

t
  0, 1 , x  0; t   (2) 

1 2
0

0

( ) ( , ) ( ) ,
3

 


  
y

С z y
t C y t p z dzdy

t
 0; t                  (3) 

( , 0) ( 1 0),   C x x   0, 1 ; x  0 (0) 0,C                 (4) 

где 
2

2

2
( ) ( ) ,

3
 

w

P w p z dz  0 1; w  

2 2

0 2

2 2
( ) ( ) ( ) ( ) ,

3 2 2 2

  
   

  
  
x x

x x

z z x z x
q x P z dz P z dz P z dz  (0, 1). x  

Здесь также 0 ( )C t  — вероятность существования на периоде «реше-

та» нуль-отверстия. 
Для удобства представим функцию ( , )C x t  в виде суммы 

(1)
1( , ) ( , ) ( 1 0) ,     q tC x t C x t x e                       (5) 

где 1( , )C x t  — ограниченная составляющая ( , ).C x t  
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После подстановки суммы (5) в уравнение (2) и преобразований 
получаем задачу Коши для интегродифференциального уравнения 
относительно 1( , ):C x t  

 

1
(1)1

1 1( , ) ( ) ( , ) ( ) ( , ) (1 ) ,

0, 1 , 0


     



  

 q t

x

С
x t q x C x t P y x C y t dy P x e

t

x t

      (6) 

с начальным условием  

1( , 0) 0,C x   0, 1 . x                                      (7) 

Выражение для плотности условного распределения вероятно-
стей длин стержней на выходе из отверстия ( , ) z t  находим анало-

гично соотношениям для ( , )inI x t  и ( , ),outI x t  оно имеет вид 

1

/2

( , ) ( ) ( , ) ( , ) ,  
z

z t p z R y z C y t dy   0, 2 , z  0.t              (8) 

Здесь ( , )R y z  — вероятность того, что стержень длиной z  преодоле-
ет отверстие шириной .y  Определим ее по формуле 

2
, min( , 1);

3 2( , )

, min( , 1) 1.
3

   
  


y z z
y z

R y z
y

z y

 

Решение системы (3)–(4), (6)–(7) и его свойства. Посредством 

подстановки (1)
1( , ) ( , )  q tC x t A x t e  задача Коши (6)–(7) преобразует-

ся к виду 

 

1

( , ) ( ) ( , ) ( ) ( , ) (1 ),

0, 1 , 0;


     



  


x

A
x t Q x A x t P y x A y t dy P x

t

x t

        (9) 

( , 0) 0,A x   0, 1 , x                                (10) 

где ( ) (1) ( ). Q x q q x  

Функция ( , ),A x t   0, 1 , 0  x t  может быть разложена в сте-

пенной ряд 

1

( , ) ( ) ,jj
j

A x t D x t



                                   (11) 
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коэффициенты которого определяются из рекуррентных соотношений 

1

1( 1) ( ) ( ) ( ) ( ) ( ) ,   j j j
x

j D x Q x D x P y x D y dy  1, 2, ...j         (12) 

с начальным условием 1( ) (1 ), D x P x   0, 1 . x  

Свойство 1. Если плотность распределения ( )p z  непрерывна на 

отрезке  0, 2 ,  то решение задачи Коши (3)–(4), (6)–(7) существует 

единственно, причем 0 ( ) (0, ), C t C  1( , ) (0, 1),
k

k

C
x t C

t





 0, t  

0, 1, ... .k  
Доказательство. Достаточно показать, что ряд (12) и соответ-

ствующие ему слагаемые ряда, полученные почленным дифференци-
рованием по переменным x  и ,t  сходятся равномерно и являются 

непрерывными функциями 0, t   0, 1 .x  

Поскольку ( )p z  непрерывна на отрезке  0, 2 ,  то 2( ) (0, 1),q x C  
1( ) (0, 1),P x C  1( ) (0, 1),jD x C  1, 2, ... .j  

Промажорируем коэффициенты ряда (11) по норме пространств 

функций (0, 1)C  и 1(0, 1)C  [3]. Запишем неравенства 

2 3
0 ( ) max , , 1 1,

3 2 2 2
     
 

x x
q x

x
 

1
,

3


dq

dx
 

1
( ) (1 ),

3
 Q x x  

2
0 ( ) ,

3
P x    0, 1 , x  

с учетом которых из (2) получаем мажоранты: 

(0, 1)

1
,

3 ( 1)!




j jC

j
D

j
 1, 2, ... .j                      (13) 

Посредством дифференцирования (12) по х получаем рекуррент-
ные соотношения для производных коэффициентов ( ):jD x  

1( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )     j j
j j

dD dDdq
j x x D x Q x x P x D x

dx dx dx
 

1

( ) ( ) ,j
x

dP
y x D y dy

dy
    0, 1 , x  1, 2, ...,j  
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из которых следуют оценки 

1

(0, 1)
(0, 1) (0, 1)

5 1
( 1) ,

3 3
  j j

j C
C C

dD dD
j D

dx dx
 1, 2, ... .j  

На основании этих оценок с учетом (13) и соответствующих 
начальных условий имеем 

1
(0, 2)

1 (0, 1)

4 2
;

3


 C

C

p
D                             (14) 

1
(0, 2)
1(0, 1)

4
,

3 ( 2)!





C

j jC

p j
D

j
 2, 3, ... .j                 (15) 

Из соотношений (13)–(15) следует, что ряд (11) и соответствую-
щие ему слагаемые ряда, полученные почленным дифференцирова- 
нием (11) по переменным x  и ,t  сходятся равномерно, причем для 

функции 1( , )C x t  справедливы оценки 

     

1

33 1/3 (1)1
(0, 2)

(0, 1)

4
2 8 ,

3

kk
q t

k C
C

C
R t p e

t
        

 

0, t  0, 1, ... .k  

Учитывая элементарным способом получаемые неравенства 

1
(1)0 1

1
(0, 1)

2 1
( ) ( ) ,

3 3




  
k k

k q t
k k

C

d C d C
t q t e

dt dt
 0, t  0, 1, ...,k  

констатируем справедливость утверждения.  
Свойство 2. Имеют место оценки снизу 

max( ) (1) (1)

1
max

( , ) (1 ) (1 ) ,
(1) ( ) (1)

   
   

 

q tq x t q t q te e e e
С x t P x P x

q q x q q
 

 0, 1 , x  0,t  

где max (0, 1)
.

C
q q  

Доказательство. В силу неотрицательности функции ( )P x  на 
интервале (0, 1)  из (9), (10) запишем неравенства 

( , ) 0,A x t  
( ) 1

( , ) ( 1) .
( )


 

Q x te
A x t P x

Q x
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Из этого с учетом монотонного убывания функции 
( )

 


x ye e

y x
 по 

обоим аргументам следует требуемое доказательство.  

Заметим, что (1)
1

2
(1, ) .

3
 q tC t e

t
 

Свойство 3. Справедливы оценки сверху 

min
1 1

2 3 2
( , ) 2 (1 )

3 2(1 ) 3
 

      

q tt
С x t I x t e

x
 

min
23/4 1/4 2 (1 )
3

3/2

(3 / 2)
,

(1 )3

  




q t x tt
e

x
  0, 1 , x  0,t  

где 
 min
0,1

min ( ).q q x  

Доказательство. Поскольку min( ) 0,q x q   
2

0 ( ) ,
3

P x   x  

 0, 1 ,  то min
1( , ) ( , ) ,

 q tC x t A x t e  где ( , )A x t  — решение уравне-

ния 
12 2

( , ) ( , ) ,
3 3


 

 
x

A
x t A y t dy

t
  0, 1 , x  0t  при начальном 

условии ( , 0) 0, A x   0, 1 . x  

Методом интегральных преобразований можно получить анали-
тическое решение рассматриваемой задачи Коши: 

1
2 3 2

( , ) 2 (1 ) ,
3 2(1 ) 3

 
     

t
A x t I x t

x
 (0, 1), x  

2
(1, ) ,

3 A t
t

 0, t  

что ввиду свойств функций Бесселя [17] доказывает данное свойство.  
Свойство 4. Имеет место условие нормировки 0 ( ) С t  

1

1
0

( , ) 1, C x t dx  0. t  

Доказательство. Достаточно показать выполнение тождества 
1

0 1

0

( ) ( , ) 0,
 

 
 
С C

t x t dx
t t

 0, t  что достигается путем подстановки 

вместо производных соответствующих выражений правых частей си-
стемы кинетических уравнений задачи Коши (2)–(4).  



Моделирование стохастических процессов фильтрации… 

25 

Конечно-разностная схема для приближенного решения зада-
чи Коши (6)–(7). На конечных интервалах  0, ,T  где 0T  — вели-

чина порядка постоянной времени процесса, одним из эффективных 
способов решения задачи Коши (6)–(7) является применение конечно-
разностных методов, из которых для краткости изложения рассмот-
рим схему первого порядка 

1

1

,






   

 
j j i

j j ji i
i i i k ik

k

B B
a B P B h R  1, ;i M                 (16) 

0
00 ;

 jq tj
jB P t e  (1 ); i ia q z  ( );i iP P z  ;iz ih  

0 ;
 jq tj

i iR Pe     1 , 1 (1) , j
i j m iC z t B o  , 0, h  0, ;i M  

1
;h

M
 

; jt j  0, ;j J  .
T

J
    

 

Здесь квадратные скобки означают операцию вычисления целой части.  
Для невязок системы уравнений (16), получающихся после под-

становки сеточной функции   0,

0,






j Jj
h i i M

B B  точного решения задачи 

(6)–(7), имеют место неравенства 

1 2 ,  j
i f f h                                        (17) 

где 0;   0;h  1, ;i M  1, ;j J  коэффициенты 1 f  
2

1
3 2

0 (0, 1)

sup ;





t C

C
f

t
 12 3 1 (0, 1)

0
sup ;



C

t
f f C   3 (0,2)

2
1 2

3
 

C
f p  в си-

лу ранее доказанных выше свойств функции 1( , )С x t  являются ко-

нечными числами. 
Методом мажорантных оценок можно показать выполнение сле-

дующего условия устойчивости схемы: 

(1) (2) (1) (2) .   h h h hh h
B B R R                          (18) 

Здесь 
1

,
 

 


Te
 min(0, 1)

;  
C

P q  сеточная норма определяется 

по правилу  

max ,


 j
h ih

B B    , : 0, ; 0, .   i j i M j J  
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Таким образом [3], схема (16) является корректной, а прибли-
женное решение hB  сходится к точному решению, причем из уравне- 
ний (17, 18) следуют оценки 

 1 4 5, ,  j
i j m iC z t B f f h   , , i j  

где 4 1const ,f f  5 2const .f f  
Аналогичная конечно-разностная схема первого порядка точности, 

соответствующая задаче Коши (6)–(7), получается из схемы (16) при 

 1 , i iq Q z  .j
i iR P  Тогда    , 1 ( ) ,   j

i j m iA z t B o h  , 0, h  

0, ,i M  0, .j J  
Значения коэффициентов в мажоранте (17) для этой схемы стано-

вятся зависимыми степенным образом от длины интервала интегри-
рования .T  

Из упомянутых схем предпочтительнее вторая, так как в ней сво-
бодный член не зависит от времени. Конечно-разностная схема (16) 
является практически приемлемой при вычислениях на ЭВМ. 

При рассматриваемых в статье ограничениях первый порядок по-
грешности по h  численного решения методом конечных разностей 
является неулучшаемым. 

В силу ранее доказанных свойств решения задачи Коши такое 
ограничение отсутствует для временной составляющей погрешности 
соответствующих многошаговых конечно-разностных схем. Если ко-
эффициенты и решение системы (6)–(7) обладают достаточной сте-
пенью гладкости по переменной x , то могут быть построены схемы 
второго и более высокого порядка точности по .h  

Результаты численного моделирования. Результаты моделирова-
ния и использования метода конечных разностей (МКР) тестовой зада-
чи, имеющей квазиполиномиальное аналитическое решение с коэффи-

циентами 
1

( ) 1 ,
6


 

x
q x  

2
( )

3
P x  и параметрами схемы 0,025,h  

0,5,   представлены на рис. 2. На рис. 3 приведены результаты моде-
лирования той же задачи с исходными данными (см. предыдущий раз-
дел) и параметрами схемы 0,025,h  0.   

По оси ординат отложены значения функций 1
( , )

( , )  h

h h

A x t
a x t

A
 

(приближенное решение), 2
( , )

( , ) 
h

A x t
a x t

A
 (точное решение) (см. 

рис. 2); 3
( , )

( , ) h

h h

A x t
a x t

A
  (см. рис. 3), где ( , )hA x t  — линейный 

сплайн, соответствующий вектору .hA  



Моделирование стохастических процессов фильтрации… 

27 

 

Рис. 2. Результаты решения МКР модельной задачи 
при ,t  равном 10 (1), 30 (2) и 60 (3): 

 — МКР;  — точное решение 

 

Рис. 3. Графики численного решения МКР при равномерном распределении 
размеров частиц при ,t  равном 3 (1), 13 (2) и 60 (3) 

 
Заключение. Исследованная в статье модель, несмотря на ряд 

упрощающих предположений, дает общее представление о процессе 
фильтрации в решетчатых структурах. Полученные результаты могут 
быть развиты, прежде всего, в отношении рассматриваемых функцио- 
нальных классов плотности распределения размеров фильтрующихся 
частиц и метода асимптотических оценок на отрезке  0, .x  Предпо-

ложение о знакоопределенности второй производной функции ( )q x  
было сделано исключительно в целях уменьшения громоздкости вы-
кладок. 
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Свойства системы и плотности распределения размеров отверстий 
в случае двумерной прямоугольной решетки в целом аналогичны. 

Для учета трехмерных эффектов, вызванных, в частности, нали-
панием частиц друг на друга, их отрывом, отражением и диффузией 
в тангенциальных и обратных направлениях, сложной топологией 
структуры и многими другими факторами, вывод соответствующих 
кинетических уравнений становится затруднительным, а его структу-
ра существенно усложняется. По этим причинам единственным до-
ступным оказывается метод статистического моделирования на ЭВМ. 

Примененный в статье детермированный метод, основанный на 
конечно-разностных методах решения интегродифференциальных 
уравнений, показал, что конечно-разностные методы являются более 
эффективными по отношению к методам Монте-Карло. 
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The purpose of the paper was to formulate and study the system of kinetic equations 
modeling the process of diffusion filtration based on a stochastic approach. Within the 
research we proved the theorem of existence and uniqueness of the solution with respect 
to the case of continuous density, obtained the solutions in uniformly convergent and as-
ymptotic series and examined its behavior at infinity. Moreover, we considered the spe-
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