533.16 Techniques for numerical simulation flow around an axisymmetric blunt body in an underexpanded jet of liquid rocket engine combustion products

Gorskiy V. V. (Bauman Moscow State Technical University), Kovalsky M. G.

IDEAL GAS, EULER EQUATIONS, SHOCK WAVE, BOUNDARY LAYER EQUATIONS, JET OF COMBUSTION PRODUCTS, LIQUID ROCKET ENGINE


doi: 10.18698/2309-3684-2017-2-6580


Testing thermal protection in jets of propulsion system combustion products is one of the priority types of its experimental development. The informational content of such trials depends to a large extent on the mathematical modeling of the processes taking place in the experiments under consideration. They include flow past a model made of ablative thermal protection, convective heat transfer and friction in the laminar-turbulent boundary layer formed on the model surface, ablation of thermal protection and change in the shape of the model. The article describes the mathematical modeling of the first of the above processes, associated with solving the complex problem of constructing the field of gas dynamic functions in the underexpanded high-pressure jet of the liquid rocket engine combustion products in a flooded space and the divergent jet flow around the model surface. The results of comparison of analytical results with experimental data are presented.


[1] Vignoles G.L., Lachaud J., Aspa Y., Goyhénèche J.M. Composites Science and Technology, 2009, vol. 69, no. 9, pp. 1470–1477.
[2] Bin Q., Ning T., Yanghui Z., Lisong Z., Wenzhong L. The summary of the thermal protection test technology using high temperature and supersonic gas jet. Proceedings of the 2015 International Symposium on Material, Energy and Environment Engineering. Series: Advances in Engineering Research, 2015, p. 245.
[3] Gorsky V.V., Nosatenko P.Ya. Matematicheskoe modelirovanie protsessov teplo- i massoobmena ri aerotermokhimicheskom razrushenii kompozitsionnykh teplozashchitnykh materialov na kremnezemnoy osnove [Mathematical modeling the heat and mass transfer processes in the aerothermochemical destruction of composite thermal shield materials based on silica]. Moscow, Nauchnyy mir Publ., 2008, 256 p.
[4] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Syzdykov E.K., Minin V.V. Inzhenernyy zhurnal: Nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 9. Available at: http://engjournal.ru/catalog/mathmodel/technic/1116.html (accessed October 06, 2017).
[5] Gorsky V.V., Sysenko V.A. Matematicheskoe modelirovanie i chislennye menody — Mathematical modeling and Computational Methods, 2014, no. 4 (4), pp. 88–94.
[6] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Matematicheskoe modelirovanie i chislennye menody — Mathematical modeling and Computational Methods, 2014, no. 3, pp. 3–24.
[7] Reznik S.V. Inzhenernyy zhurnal: Nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 3.URL: http://engjournal.ru/articles/638/638.pdf (accessed October 06, 2017).
[8] Gorsky V.V. Teoreticheskie osnovy rascheta ablyatsionnoy teplovoy zashchity [Principal theory of calculating ablative thermal protection]. Moscow, Nauchnyy mir Publ., 2015, 688 с.
[9] Gorskij V.V., Resh V.G. The study of carbon matherial’s aerothermochemical destruction in combustion products of liquid-propellant rocket engines. Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, Saint Petersburg, Russia, 2014, vol. 1–6, pp. 841–849.
[10] Safronov A.V. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2007, no. 1 (46), pp. 72–79.
[11] Schlichting H. Boundary-Layer Theory. USA, New York, McGraw-Hill, Inc.Publ., 1968 [In Russ.: Schlichting H. Teoriya pogranichnogo sloya. Moscow, Nauka Publ., 1974, 712 p.].
[12] Zemlyansky B.A., Lunev V.V., Vlasov V.I., Gorshkov A.B., Zalogin G.N. Konvektivnyy teploobmen letatelnykh apparatov [Aircraft convective heat exchange]. Moscow, Fizmatlit Publ., 2014, 380 с.
[13] Maccormack R.W. AIAA Paper, 1969, vol. 69, no. 354, pp. 1–6.
[14] Lipnitsky Yu.M., Eremin V.V., Mikhalin A.V., et al. Opredelenie nestatsionarnykh aerodinamicheskikh kharakteristik tsilindrokonicheskikh tel, sovershaushchikh kolebatelnye dvizheniya, putem pryamogo chislennogo modelirovaniya [Determination of non-stationary aerodynamic characteristics of cylinder-conic bodies performing vibrational motions by direct numerical simulation]. Svidetelstvo gosudarstvennoy registratsii program dlya PEVM No 12612193 ot 28.02.2012 [Certificate of state registration of programs for PC no. 12612193 of 28.02.2012].
[15] Godunov S.K., Zabrodin A.V., Prokopov G.P. Zhurnal vychislitelnoy matematiki i matematicheskoi fiziki Akademii nauk SSSR — Journal of Computational Mathematics and Mathematical Physics USSR Academy of Science, 1961, vol. 1, no. 6, pp. 1020–1050.
[16] Gorsky V.V., Kovalsky M.G., Mikhalin V.A., Sapronov A.V. Sopostavlenie raschetno-teoreticheskikh i eksperimentalnykh dannykh po obtekaniyu osesimmetrichnogo zatuplennogo tela raskhodyashcheysya struey produktov zhidkostnogo raketnogo dvigatelya [Comparison of theoretical, experimental data on the flow around an axially symmetric blunt body by a divergent jet of liquid rocket engine products]. Materialy XXXV Vserossiyskoy konferentsii po
problemam nauki i tekhnologiy, posvyashchennoy 70-letiu Pobedy. Tom 2 [Proceedings of the XXXV All-Russian Conference on Science and Technology, dedicated to the 70th anniversary of the Victory. Vol. 2]. Moscow, RAS Publ., 2015, pp. 3–11.


V.V. Gorsky, M.G. Kovalsky Techniques for numerical simulation flow around an axisymmetric blunt body in an underexpanded jet of liquid rocket engine combustion products. Маthematical Modeling and Coтputational Methods, 2017, №2 (14), pp. 65-80