doi: 10.18698/2309-3684-2017-1-3254
Представлены результаты разработки модели деформирования несжимаемых слоистых композитов с конечными деформациями по характеристикам отдельных слоев. Предложен вариант метода асимптотического осреднения для слоистых нелинейно-упругих несжимаемых композитов с конечными деформациями и периодической структурой. Использовано универсальное представление определяющих соотношений для несжимаемых слоев композита, предложенное Ю.И. Димитриенко, позволяющее проводить моделирование одновременно для комплекса различных нелинейно-упругих моделей сред, отличающихся выбором пары энергетических тензоров. Доказано, что, если все слои композита являются несжимаемыми, то композит в целом также является несжимаемой, но анизотропной средой. Рассмотрена задача об одноосном растяжении слоистой пластины из несжимаемых слоев с конечными деформациями, с помощью разработанного метода рассчитаны эффективные диаграммы деформирования, связывающие компоненты осредненных тензоров напряжений Пиолы — Кирхгофа и градиента деформаций, а также распределение напряжений в слоях композита.
Разработанный метод расчета эффективных диаграмм деформирования и напряжений в слоях композита может быть использован при проектировании эластомерных композитов с заданными свойствами.
[1] Christensen R.M. Mechanics of composite materials. New York, John Wiley & Sons, 1979, 324 p.
[2] Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических средах. Москва, Наука, 1984, 356 с.
[3] Победря Б.Е. Механика композиционных материалов. Москва, Изд-во МГУ, 1984, 336 с.
[4] Dimitrienko Yu.I. A Structural thermos-mechanics model of textile composite materials at high temperatures. Composites Science and Technology, 1999, vol. 59, issue 7, pp. 1041–1053.
[5] Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В. Конечно-элементное моделирование эффективных вязкоупругих свойств однонаправленных композиционных материалов. Математическое моделирование и численные методы, 2014, № 2, с. 28–48.
[6] Димитриенко Ю.И., Кашкаров А.И. Расчет эффективных характеристик композитов с периодической структурой методом конечного элемента. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2002, № 2, с. 95–108.
[7] Димитриенко Ю.И., Кашкаров А.И., Макашов А.А. Конечно-элементный расчет эффективных упругопластических характеристик композитов на основе метода асимптотического осреднения. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2007, № 1, с. 102–116.
[8] Димитриенко Ю.И., Губарева Е.А., Кольжанова Д.Ю. Моделирование слоистых композитов с конечными деформациями методом асимптотической гомогенизации. Инженерный журнал: наука и инновации, 2015, вып. 5. URL: http://engjournal.ru/catalog/msm/pmcm/1405.html (дата обращения 24.05.2017). DOI 10.18698/2308-6033-2015-5-1405
[9] Димитриенко Ю.И. Моделирование нелинейно-упругих характеристик композитов с конечными деформациями методом асимптотического осреднения. Известия высших учебных заведений. Машиностроение, 2015, № 11, с. 68–77. DOI 10.18698/0536-1044-2015-11-68-77
[10] Yang Q., Xu F. Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive law. Frontiers of Mechanical Engineering in China, 2009, vol. 4, issue 3, pp. 284–288.
[11] Aboudi J. Finite strain micromechanical modeling of multiphase composites. International Journal Multiscale Computational Engineering, 2008, vol. 6, no. 5, pp. 411–434.
[12] Zhang B., Yu X., Gu B. Micromechanical modeling of large deformation in sepiolite reinforced rubber sealing composites under transverse tension. Polymer Composites, 2015. DOI 10.1002/pc.23596
[13] Ge Q., Luo X., Iversen C.B., Nejad H.B., Mather P.T., Dunn M.L., Qi H.J. A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions. International Journal of Solids and Structures, 2014, vol. 51, pp. 2777–2790.
[14] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 4. Основы механики твердых сред. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2013, 624 с.
[15] Димитриенко Ю.И., Даштиев И.З. Модели вязкоупругого поведения эластомеров при конечных деформациях. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2001, № 1, с. 21–41.
[16] Димитриенко Ю.И. Нелинейная механика сплошной среды. Москва, Физматлит, 2009, 610 с.
[17] Димитриенко Ю.И., Яковлев Н.О., Ерасов В.С., Федонюк Н.Н., Сборщиков С.В., Губарева Е.А., Крылов В.Д., Григорьев М.М., Прозоровский А.А. Разработка многослойного полимерного композиционного материала с дискретным конструктивно-ортотропным заполнителем. Композиты и наноструктуры, 2014, т. 6, № 1, с. 32–48.
[18] Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, № 1, с. 36–57.
[19] Димитриенко Ю.И., Яковлев Д.О. Асимптотическая теория термоупругости многослойных композитных пластин. Механика композиционных материалов и конструкций, 2014, т. 20, № 2, с. 260–282.
Димитриенко Ю. И., Губарева Е. А., Кольжанова Д. Ю., Каримов С. Б. Моделирование несжимаемых слоистых композитов с конечными деформациями на основе метода асимптотического осреднения. Математическое моделирование и численные методы, 2017, №1 (13), c. 32-54
Количество скачиваний: 804