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Представлены результаты разработки модели деформирования несжимаемых 
слоистых композитов с конечными деформациями по характеристикам отдель-
ных слоев. Предложен вариант метода асимптотического осреднения для слои-
стых нелинейно-упругих несжимаемых композитов с конечными деформациями 
и периодической структурой. Использовано универсальное представление опреде-
ляющих соотношений для несжимаемых слоев композита, предложенное Ю.И. Ди- 
митриенко, позволяющее проводить моделирование одновременно для комплекса раз-
личных нелинейно-упругих моделей сред, отличающихся выбором пары энергетических 
тензоров. Доказано, что, если все слои композита являются несжимаемыми, то ком-
позит в целом также является несжимаемой, но анизотропной средой. Рассмотрена 
задача об одноосном растяжении слоистой пластины из несжимаемых слоев с конеч-
ными деформациями, с помощью разработанного метода рассчитаны эффективные 
диаграммы деформирования, связывающие компоненты осредненных тензоров 
напряжений Пиолы — Кирхгофа и градиента деформаций, а также распределение 
напряжений в слоях композита. Разработанный метод расчета эффективных диа-
грамм деформирования и напряжений в слоях композита может быть использован 
при проектировании эластомерных композитов с заданными свойствами. 
 
Ключевые слова: слоистые композиты, конечные деформации, несжимаемые сре-
ды, метод асимптотического осреднения, тензор напряжений Пиолы — Кирхго-
фа, градиент деформации, универсальные модели определяющих соотношений, 
диаграммы деформирования 

 
Введение. Значительный интерес для промышленности представ-

ляют композиционные материалы, способные выдерживать большие 
деформации (до 100 % и более) и состоящие из резиноподобных и эла-
стомерных матриц и высокопрочных армирующих наполнителей (тка-
ней, волокон и др.). Для расчета прочности таких композитов с конеч-
ными деформациями в зависимости от их микроструктуры необходимы 
методики, позволяющие связать эффективные механические характери-
стики — диаграммы деформирования в области больших деформаций 
с нелинейно-упругими характеристиками отдельных фаз композита. 
Для малых деформаций существует достаточно много методов решения 
этой задачи [1–7], однако для композитов с конечными деформациями 
большинство из них неприменимы в силу существенной нелинейности 
задачи.  
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Наиболее перспективен для расчета эффективных диаграмм де-
формирования метод асимптотического осреднения [1–3]. В работах 
[8, 9] этот метод был применен для расчета нелинейно-упругих 
свойств слоистых композитов с большими деформациями. В настоя-
щей работе предложено дальнейшее развитие этого метода для рас-
чета диаграмм деформирования несжимаемых слоистых композитов 
с конечными деформациями. Несжимаемыми средами с конечными 
деформациями являются практически все резиноподобные материа-
лы [10–15]. Известно, что несжимаемые материалы некорректно рас-
сматривать как предельный случай слабосжимаемых материалов, для 
них используется специальная постановка задач теории упругости 
с дополнительным условием несжимаемости, требующая особых ме-
тодов решения. 

Для определяющих соотношений фаз композита были использо-
ваны так называемые универсальные представления моделей несжи-
маемых нелинейно-упругих сред с конечными деформациями [9], 
предложенные Ю.И. Димитриенко [15, 16]. Они позволяют в рамках 
единого методического подхода решать задачи нелинейной теории 
упругости сразу для нескольких классов моделей сред с конечными 
деформациями.  

Исходная задача нелинейной упругости для несжимаемых 
композитов с периодической структурой и конечными деформа-
циями. Обозначим эйлеровы (декартовы) координаты материальных 

точек в отсчетной и актуальной конфигурациях как kx  и 
0

,kx  лагран-

жевы координаты как iX  (их будем полагать совпадающими с де-

картовыми 
0

).i iX x  Рассмотрим слоистый композит, в отсчетной 

конфигурации представляющий собой область 
0
,V  являющуюся сис- 

темой параллельных периодически повторяющихся N  слоев, орто-

гональных к направлению 3.OХ  Тогда можно ввести ячейку перио-
дичности (ЯП) — набор из N  слоев суммарной толщиной .l  Введем 
малый параметр / 1,  l L  как отношение толщины ЯП l  

к общей толщине композита L  в отсчетной конфигурации 
0

,K  а так-

же локальную лагранжеву координату   в 
0

,K  которая связана с iX  
соотношениями 

3

, 


X
 .

i
i X

X
L

                                        (1) 
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Поместим нулевое положение локальной лагранжевой координаты 
в середину ЯП, тогда   будет изменяться в диапазоне 0,5 0,5.     

Границы раздела слоев в ЯП обозначим как ,    1, ...  , 1.  N  

Рассматривая слоистый композит как неоднородную среду, 
сформулируем для него задачу нелинейной теории упругости в ла-
гранжевом описании в общей формулировке [14] с использованием 
универсальных моделей сред с конечными деформациями, предло-
женных Ю.И. Димитриенко, для несжимаемых упругих сред 

0 0
0,  ij j

i P f   
0
;iX V                                   (2) 

 
( )

1 0 , ,   
n

ij ij ij k
lP pF FF   

0 0
; iX V                     (3) 

0
,  k k k

ll lF u   
0 0

; iX V                                (4) 

 det 1;k
lF                                            (5) 

0
[ ] 0,ij

in P   [ ] 0,iu   
0

;iX                               (6) 

0
,ij j

i en P t   
0

1,iX   ,i i
eu u     

0

2 .iX                        (7) 

Здесь: (2) — уравнения равновесия; (3) — определяющие соотноше-
ния нелинейно-упругой среды; (4) — кинематическое соотношение; 
(5) — условие несжимаемости; (6) — условия  идеального контакта 

на поверхностях раздела 
0

    и -й компоненты композита; (7) — 

граничные условия на частях 
0

1  и 
0

2  внешней поверхности компо-

зита (
0 0 0

1 2   V ). Скачок функций на границе раздела 
0

  компо-

нент композита обозначен [ ].ijP  Все компоненты векторов и тензо-

ров отнесены к неподвижному ортонормированному базису ke  — 

отсчетной конфигурации 
0

.K  

Кроме того, введены следующие обозначения: 
0
  — плотность, 

p  — гидростатическое давление, а также компоненты тензора 

напряжений Пиолы — Кирхгофа ,ijP  тензора градиента деформации 

,k
lF  обратного градиента деформации 1 , ijF  вектора перемещений 

,ku  вектора нормали 
0

in  к поверхности в 
0

,K  вектора поверхностных 
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усилий ,j
et  вектора заданных перемещений поверхности ,i

eu  вектора 

плотности массовых сил ,jf  набла-оператор 
0

.


 


i iX
 

В соотношении (3) 
( )

0
n

ijF  — компоненты тензора, описывающего 
нелинейно-упругие свойства фаз композита согласно моделям Bn 
упругих несжимаемых сред с конечными деформациями [15, 16] 

     
( ) ( ) ( )00 0, , ,

 
       

 

n n n
ij k ijsq k pr

l l sqF F GF  

( ) ( )

( )
, , ,

   
       

   

n n
pr pr

sq n
sq

G G

G

                           (8) 

 
( ) 3 0 0 0
0 0

, 1

,    
 

  
n
ijsq k i j s q

lF E Q Q Q Q  
3( ) 0 0

3

1

1
.

3

  


 

 
n

pr n p rG Q Q
n

 

Здесь 
( )
0
n
ijsq  — компоненты тензора энергетической эквивалент- 

ности [16]; 
( )

,
 

  
 

n
prG  — упругий потенциал, различный для каждой 

фазы композита, и поэтому зависящий явно от ;  
( )n

prG  — компонен-
ты симметричного тензора энергетических мер деформации [16]; 

 0
 E  — функции собственных значений   тензоров искажений, 

собственные значения   являются также функциями только от ком-

понент тензора k
lF  [16];  

0


i k

lQ F  и  
j k

lQ F  — матрицы собственных 

векторов левого и правого тензора искажений, являющиеся неявны-

ми функциями от .k
lF  

Асимптотические разложения в нелинейной задаче механики 
для слоистого композита. Решение нелинейной задачи механи- 

ки (1)–(7) находим относительно поля вектора перемещений ku  

 , k iu X  и гидростатического давления  ,ip X  в виде квазипе-

риодических функций координат, т. е. периодических функций по 
локальной лагранжевой координате   и зависящих от глобальных 

лагранжевых координат :iX  
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   , , ,   k i k iu X u X a      , , ,   i ip X p X a           (9) 

где a  — произвольное целое число. 

Дифференцирование квазипериодических функций  ,k if X  осу-

ществляем по формальным правилам дифференцирования сложной 
функции, тогда с учетом (9) имеем 

, |3

0

3
1

,   
i

k k k
i iu u u                                     (10) 

где    , |3
, , , .

 
   



k

i

k kk l l
i

u u X u u X
X

 

Будем искать решение задачи (1)–(5) для композита периодиче-
ской структуры в виде асимптотических разложений по параметру :  

     (0) (1) 2, , ...,      k i k i k iu X u X u X  

     (0) (1) 2, , , ... .       i l i l i lp X p X p X               (11) 

Подобные асимптотические разложения использованы в задачах 
о тонких упругих многослойных пластинах [17–19]. Подставляя (11) 
в соотношения (4) с учетом правила дифференцирования (10), нахо-
дим асимптотическое разложение для градиента деформации:  

   (0) (1) 2, , ...,      
ll

k k i k i
lF F X F X

 

  3 3, /3 , /3

(0) (0) (1) (1) (0) (2), , .        
l ll l l

k i k k k k k k
l lF X u u F u u

 
           (12) 

Подставляя разложение (11) в соотношения (3) и используя фор-
мулу Тейлора, находим асимптотические разложения определяющих 
соотношений и тензора Пиолы — Кирхгофа: 

     (0) (1) 2 (2), , , ...,        ij ij k ij k ij kP P X P X P X  

   
( )

(0)(0) (0) 1 0 (0) , ,   
n

ijij ij k
lP p F FF                       (13) 

     
( )

(1) (0)(1) (0) 1 (1) 1 0 (0) (1)
(0)

, .  
    



n
ij ijij ij k k

l lk
l

P p F p F F F
F

F  

Подставляя разложение (12) в уравнение (5), с использованием 
формулы Тейлора находим асимптотическое разложение уравнения 
несжимаемости: 
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   (0) (0) (1) 2
(0)

det det ... 1.


    


k p k
rl lk

l

F F F
F

                  (14) 

После подстановки разложения (13) в уравнения равновесия (2) 
с учетом (10), получаем асимптотическое разложение уравнений рав-
новесия и граничных условий: 

 /3 /3 /3

0(0) (0) (1) (1) (2) 2
3 , 3 , 3

1
... 0,

 
              

ij ij ij j ij ij
i i i i iP P P f P P  

0 03 (0) 3 (1) 2
33 ... 0,          

j jn P n P  

(0) (1) 2... 0,          
k ku u  

0
,iX                     (15) 

0 03 (0) 3 (1) 2
3 3 ... ,    j j j

en P n P t  
0

1,iX  

(0) (1) 2... ,    k k i
eu u u  

0

2 .iX  

Локальные задачи нелинейной теории упругости для несжи-
маемых сред. Приравнивая к нулю в уравнениях (13)–(15) члены при 
одинаковых степенях ,  получаем рекуррентную последователь-

ность L  локальных задач нелинейной теории упругости для несжи-

маемых сред. Задача 0L  имеет следующий вид: 

3 (0)
/3 0,jP  

   
( )

(0)(0) (0) 1 0 (0) , ,   
n

ijij ij k
lP p F FF  

 (0) (1)
3/3, ,   k i k k

l llF X F u  

 (0)det 1,k
lF                                          (16) 

3 (0) 0,   
jP   (1) 0,   

ku   , 1,..., 1,     n  

(1) 0,ku  (1)

3
0,     

ku  (0) .p p  

Здесь введена операция осреднения по ЯП 
0

V  

0,5
(1) (1)

0,5

,


  k ku u d                                        (17) 
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обозначены средний градиент деформации композита  

(0)
,  k k k

l l lF u                                           (18) 

и среднее гидростатическое давление в композите .p  

Наличие условий (1) 0ku  и (0) p p  вызвано требованием 

единственности задачи на ячейке и делает ее интегро-дифференциальной. 

Условие (1)

3
0     

ku  означает периодичность неизвестных функций на 

границе ЯП (1) (1) (1)

0,5 0,53
0.

 
       

k k ku u u   

Задачу 0L  рассмотрим относительно неизвестных перемещений 
(1) ,ku  при этом средний тензор-градиент k

lF  и среднее давление p  

являются «входными данными» локальной задачи 0.L  

Локальная задача 1L  имеет вид: 

0(0) (1)
, 3/3 0,   ij ij j
i iP P f  

     
( )

(1) (0)(1) (0) 1 (1) 1 0 (0) (1)
(0)

, ,  
    



n
ij ijij ij k k

l lk
l

P p F p F F F
F

F  

(1) (1) (2)
3, /3 ,  k k k

ll lF u u  

 (0) (1)
(0)

det 0,





p k
r lk

l

F F
F

                            (19) 

3 (1) 0,   
jP  (2) 0,   

ku  , 1,..., 1,     n  

(2) 0,ku  (2)

3
0,     

ku  (1) 0.p  

Эта система уравнений рассматривается относительно перемеще-

ний (2)ku  и давления (1)p  и является линейной относительно данных 

функций. 
Осредненная задача нелинейной теории упругости для ком-

позита. В силу периодичности функций на ЯП имеет место соотно-
шение 

3 (0) 3 (0) 3 (0)
/3 0,5 0,5

0.
 

   j j jP P P                      (20) 
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Осредняя систему уравнений (15), в том числе уравнения (13), 
с учетом (20), получаем осредненную задачу нелинейной упругости 
для композита 

0(0)
, 0,     ij j
iP f  

   
( )

(0)(0) (0) 1 0 (0) , ,        
n

ijij ij k
lP p F FF            (21) 

(0) (0)
, ,   k k k

ll lF u  

0 (0) ,  ij j
i en P t  

0

1,iX  (0) , k i
eu u  

0

2 .iX  

Покажем, что осредненный градиент деформации  k
lF  совпа-

дает со средним градиентом деформаций :k
lF  

. k k
l lF F                                           (22) 

Действительно, используя третью формулу из системы (16) и 

осредняя ее по ЯП, в силу периодичности функций (1),ku  получаем: 

0,5
(0) (1) (1)

3 3/3 /3
0,5

(1) (1)
3 0,5 0,5

.



 

        

      
 

k k k k k
l l l ll

k k k k
l l l

F F u F u d

F u u F               (23)

 

Вычислим теперь детерминант градиента деформации (0) .k
lF   

С учетом (12) и (16), получаем 

   
1 1 1 1(1)

1 2 3 /3

(0) (1) 2 2 2 2(1)
3 1 2 3/3 /3

3 3 3 3(1)
1 2 3 /3

det det det .

 
 

     
   

k k k
l ll

F F F u

F F u F F F u

F F F u

        (24) 

Раскрывая детерминант матрицы по третьему столбцу, получаем 
линейную дифференциальную форму 

     

 

2 2 1 1
1 2 1 2(0) 1 1(1) 2 2(1)

3 3/3 /33 3 3 3
1 2 1 2

1 1
1 2 3 3(1)

3 /32 2
1 2

det det det

det .

   
          

   
 

   
 

k
l

F F F F
F F u F u

F F F F

F F
F u

F F
 (25)
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Осредним теперь соотношение (25) по ЯП и примем во внимание, 
что детерминанты матриц размером 2 в этом выражении от   не за-

висят, а (1)
/3 0 ju  в силу периодичности (1).ju  Тогда 

 
2 2

1 2(0) 1 1(1)
3 /33 3

1 2

1 1
1 2 2 2(1)

3 /33 3
1 2

det det

det

 
       

 
 

      
 

k
l

F F
F F u

F F

F F
F u

F F

 

1 1 2 2
1 2 1 23 3(1) 3

3 3/32 2 3 3
1 2 1 2

det det
   

          
   

F F F F
F u F

F F F F
 

1 1 1 1
1 2 1 22 3

3 33 3 2 2
1 2 1 2

det det det( ).
   

        
   

k
l

F F F F
F F F

F F F F
              (26) 

В силу того, что все компоненты композита являются несжимае-

мыми,  (0)det 1,k
lF  поэтому с учетом (24)  

 det 1.k
lF                                            (27) 

Иначе говоря, композит в целом — несжимаемый материал. 
Из соотношения (27) вытекает, что в системе из 1N  уравнения  

  (0)det , 1, k i
lF X  1, 0,  1,  ..., 1,        N  

  det 1k i
lF X                                         (28) 

независимыми являются только  N  уравнений. 

Перемещение (1) ,ku  являющееся решением задачи 0L  (16), может 

быть представлено как функция локальных координат и «входных 

данных задачи»: среднего градиента деформаций k
lF  и среднего гид-

ростатического давления .p  Тогда в виде такой же зависимости 

 (0) (0) , , , k k m
sl lF F F p   (1) (1) , , k k m

su u F p                (29) 

может быть представлен и градиент (0)k
lF  нулевого приближения. 

Осредненные определяющие соотношения для композита 
с несжимаемыми фазами. Подставляя (29) во вторую группу соот-
ношений (21), получаем осредненные определяющие соотношения 
композита, записанные в неявной форме: 
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   
( )

(0)(0) (0) 1 0 , ,     
n

ijij ij k
lP p F F pF  

    
( ) ( )

0 0 (1)
3

/3
, , , , .     

n n
ij k ij k k p m

l l r lF p F u F pF F                (30) 

Вычислим компоненты тензора  (0)(0) 1 . 
ij

p F  Поскольку 

 (0)det 1,ijF  компоненты обратного тензора  (0)1 , ij
F  вычислен-

ные через алгебраические дополнения элементов (0) ,ijF  в явном виде 
могут быть записаны как 

     (0)111 2 3 3(1) 3 2 2(1)
2 3 2 3/3 /3 ,    F F F u F F u  

     (0)221 1 3 3(1) 3 1 1(1)
1 3 1 3/3 /3 ,    F F F u F F u  

 (0)331 1 2 2 1
1 2 1 2 ,  F F F F F  

     (0)121 1 3 3(1) 3 1 1(1)
2 3 2 3/3 /3 ,     F F F u F F u  

     (0)211 2 3 3(1) 3 2 2(1)
1 3 1 3/3 /3 ,     F F F u F F u               (31) 

     (0)131 1 2 2(1) 2 1 1(1)
2 3 2 3/3 /3 ,    F F F u F F u  

 (0)311 2 3 3 2
1 2 1 2 ,  F F F F F  

     (0)231 2 1 1(1) 1 3 3(1)
2 3 1 3/3 /3 ,    F F F u F F u  

 (0)321 1 3 1 3
2 1 1 2 .  F F F F F  

Часть этих компонент  (0)1 ij
F не зависят от координаты   

и совпадают с соответствующими компонентами обратного осреднен-

ного тензора  1 . ij
F  Остальные компоненты  (0)1 ij

F  являются ли-

нейными функциями от частных производных (1)
/3 .ku  Тогда при осред-

нении компонент из первой группы, умноженных на  (0) , ,kp X  

получаем: 
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   (0)(0) 1 (0) 1 .   
ij ij

p F p F                            (32) 

При осреднении компонент из второй группы, умноженных на 

 (0) , ,kp X  получаем выражения 

     
  

(0)23(0) 1 (0) 2 1 1(1) 1 3 3(1)
2 3 1 3/3 /3

(0) 2 1 1 3 (0) 1(1) 2 (0) 3(1) 1
2 3 1 3 2 1/3 /3 ) .

     

        

p F p F F u F F u

p F F F F p u F p u F       (33)
 

Очевидно, что    232 1 1 3 1
2 3 1 3 . F F F F F  Положим далее, что ЯП 

обладает симметрией относительно плоскости 0.   Тогда в силу 

периодичности функции (0) (1), kp u  являются симметричными по ко-

ординате :     (0) (0), , ,  k kp X p X     (1) (1), , .  k k k ku X u X  

Производные (1)
/3
ku  от симметричной функции являются антисиммет-

ричными:    (1) (1)
/3 /3, , .   k k k ku X u X  Антисимметричными будут и 

произведения функций      (0) (1) (0)
/3, , ,     k k k kp X u X p X

 (1)
/3 , . k ku X  Тогда интегралы по всей ЯП от антисимметричных 

функций обращаются в нуль: 

0,50
(0) (1) (0) (1) (0) (1)

/3 /3 /3
0,5 0

0.


      k k kp u p u d p u d                 (34) 

Следовательно, в выражениях (33) все слагаемые, содержащие 

множители (0) (1)
/3 , kp u  равны нулю. Исходя из этого, получаем 

     (0)23 23(0) 1 (0) 2 1 1 3 (0) 1
2 3 1 3 .      p F p F F F F p F       (35)  

Аналогично преобразуем все остальные компоненты тензора 

 (0)(0) 1 
ij

p F  второй группы компонент: 

   (0)(0) 1 (0) 1 .   
ij ij

p F p F                              (36) 

Объединяя формулы (32) и (36), получаем, что для всех компо-

нент обратного тензора  (0)(0) 1 
ij

p F  имеет место соотношение 

(36). Тогда осредненные определяющие соотношения (30) для компо-
зита можно записать: 
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   
( )

1 0 , ,  
n

ijij ij k
lP p F F pF                                (37) 

(0) , ij ijP P      
( ) ( )

0 0 (1)
3

/3
, , , , .     

n n
ij k ij k k p m

l l r lF p F u F pF F  

Таким образом, доказано, что осредненные определяющие соот-
ношения для композита имеют вид, характерный для несжимаемых 
упругих сред, отличающийся наличием слагаемого с гидростатиче-
ским осредненным давлением .p  Однако если исходные фазы компо-
зита несжимаемые и изотропные, то композит в целом является не-
сжимаемой нелинейно-упругой анизотропной средой. Кроме того, 
гидростатическое давление p  входит в тензорную функцию 

 
( )

0 ,
n

ij k
lF pF  определяющих соотношений композита. Для фаз ком-

позита имеет место более простое определяющее соотношение (3). 
Тензор истинных напряжений Коши композита вычисляем по 

формуле .ij im mjT F P  Тогда из формулы (37) получаем 

     
( ) ( ) ( )

0 0, , , , ,    
n n n

ij ij ij k ij k im mj k
l l lT p F p F p F F pF F F      (38) 

т. е. представление определяющих соотношений композита в виде 

связи тензора напряжений Коши ,ijT  осредненного градиента де-

формации k
lF  и среднего давления .p  

Решение локальной задачи нулевого приближения. Задача (16) 
является нелинейной, но одномерной, в ней все функции зависят толь-
ко от ,  что позволяет найти ее формальное решение. 

Интегрируя уравнения равновесия в системе (16), получаем, что 

напряжения 3 (0)jP  постоянны в ЯП 

3 (0) const, j jP C                                        (39) 

где jC  — постоянные интегрирования. 
Из третьего уравнения системы (16) следует, что из девяти компо-

нент градиента деформаций (0)k
lF  от координаты   зависят только 

три, а остальные шесть совпадают с компонентами среднего градиента  

(0) (1)
33 /3 , k k kF F u   (0) , 1, 2.   k k

LLF F L         (40) 

Тогда, подставляя (37) во второе соотношение в системе (16) для 

напряжений (0)ijP  вместе с условием несжимаемости (четвертое со-
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отношение в системе (16)) и условием нормировки (последнее усло-
вие в (16)), для каждого слоя композита получаем систему нелиней-

ных алгебраических уравнений относительно трех компонент (0)
3
kF  

и (0):p  

   
( )

(0)3(0) 1 03 (0)
3 , , ,   

n
jj j k k

LC p F F FF  

 (0)det 1,k
lF                                           (41) 

(0) ,p p   1   , 0, 1, ... .  1 ,        N  

Средний градиент k
lF  в системе (41) считается известным и удо-

влетворяющим осредненному условию несжимаемости (27). Тогда 
с учетом (28) только для 1N  слоя система первых двух уравнений в 
системе (41) является независимой. Для всех N  слоев эта система 
будет зависимой, поэтому условие несжимаемости для одного из 

слоев в системе (41) заменена на условие нормировки (0) .p p  

Запишем формальное решение системы (41): 

 
( )

(0)
3 , , , , 

n
k k j k

lF C F pG  

 
( )

(0) , , , . 
n

j k
lp C F pP                                 (42) 

Тогда, подставляя первую формулу системы (42) в выражение (40), 
получаем систему трех обыкновенных линейных дифференциальных 

уравнений относительно перемещений (1)ku  

 
( )

(1)
3 /3 , , , ,  

n
k k k j k

lF u C F pG                              (43) 

которую легко интегрируем: 

 
( )

(1)
3

0,5

, , , .




     
n

k k j k k k
lu C F p d F BG                      (44) 

Здесь kB  — константы интегрирования. 

Условия идеального контакта в системе (16) 3 (0) 0,   
jP  

(1) 0   
ku  выполняются автоматически. Подставляя выражение (44) 
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в условие нормировки в системе (16) (1) 0,ku  находим константы 

интегрирования: 

 
( )

0,5

, , , .




   
n

k k j k
lB C F p dG                            (45) 

После подстановки выражения (44) в условие периодичности си-
стемы (16), получаем 

 
( )

3, , , ,  
n

k j k k
lC F p FG                                    (46) 

представляющее собой систему трех нелинейных алгебраических 

уравнений относительно трех констант .jC  

Запишем формальное решение этой системы уравнений в виде 

 
( )

, .
n

j j k
lC F pS                                       (47) 

Подставляя (47) в системы (42) и (43), находим: 

 
( ) ( )

(0)
3 , , , ,

 
   

 

n n
k k j s s

l lF F p FG S  

 
( ) ( )

(0) , , , ,
 

   
 

n n
j s s

l lp F p FP S                           (48)  

 
( ) ( )

(1)
3/3 , , , .

 
    

 

n n
k k j s s k

l lu F p F FG S  

После подстановки третьего выражения (48) в третье уравнение 

системы (16), получаем соотношение между градиентом (0)k
lF  

и осредненным градиентом :k
jF  

 
( ) ( )

(0)
3 3, , , .

  
          

n n
k k k j s s k

l m m llF F F p F FG S                 (49) 

Подставляя выражения (48), (49) для (0)p  в определяющие соот-
ношения системы (16), находим компоненты тензора напряжений 
Пиолы — Кирхгофа в нулевом приближении 
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   

 

( ) ( )
(0)(0) 1

( ) ( ) ( )
0

3 3

, , ,

, , , , .


 

     
 

   
              

n n
ijij j s s

l l

n n n
ij k k j s s k

l l l l

P F p F F

F F p F F

P S

F G S                (50)

 

При осреднении соотношения (50) получим выражение для 
осредненной функции определяющих соотношений композита 

   
( ) ( ) ( ) ( )

0 0
3 3, , , , , .

   
               

n n n n
ij k ij k k j s s k

l l l l lF p F F p F FF F G S
 

(51) 

Алгоритм численной реализации предложенного метода решения 
локальной задачи и вычисления функции осредненных определяю-
щих соотношений (51) аналогичен алгоритму, описанному для сжи-
маемых нелинейно-упругих композитов [8, 9]. 

Задача об одноосном растяжении слоистой композитной пла-
стины. Рассмотрим задачу об одноосном  растяжении пластины из 
слоистого композита. Для этой задачи средний тензор деформаций 

k
lF  композита имеет три ненулевые компоненты, не зависящие от 

координат ,iX  

1 1(0)
1 ,11 F u   2 2(0)

2 ,21 , F u  3 3(0)
3 ,31 , F u  остальные 0.k

lF      (52) 

Отсюда находим закон движения пластины из осредненного ком-
позита при одноосном растяжении 

,     1, 2, 3.  
  x F X                                 (53) 

Из условия несжимаемости (27) следует, что независимыми яв-

ляются только две компоненты :F  

1 2 3
1 2 3 1.F F F                                           (54)  

Будем искать решение локальной задачи нулевого приближе- 
ния (39)–(47) для случая одноосного растяжения в виде  

(0) 3(0)
33 3 , k kF F  

3
(0) (0)

1

,
  


  k k l

lF F  3
3 . j jC C              (55) 

Тогда из системы (40) и условия несжимаемости слоев следует, что 
все градиенты деформации слоев совпадают со средним градиентом  



Моделирование несжимаемых слоистых композитов… 

47 

(0) , 1, 2, 3.     
   F F                                  (56)  

Тогда система (41) принимает вид 

 
( )

3 (0) 3 033 3 1 2
3 3 1 2

(0)

/ , , , ,   



n

C p F F F F

p p

F
                       (57) 

и допускает решение в явном виде относительно 3C  и (0):p  

 

   

( )
3 (0) 3 033 3 1 2

3 3 1 2

( ) ( )
(0) 3 033 3 1 2 033 3 1 2

3 3 1 2 3 1 2

/ , , , ,

, , , , , , .

   

 
     
 
 

n

n n

C p F F F F

p p F F F F F F F

F

F F       (58)

 

Уравнение (46) с учетом (56) выполняется тождественно. Форму-

лы (58) вместе с 3(1)
/3 0u  представляют собой явный вид решения (48) 

для одноосного растяжения. Выражения (56) — это явная форма урав-
нений (49) для данного случая. Формула (50) для напряжений в слоях 
композита принимает следующий вид: 

   
( )

(0) (0) 0 3 1 2
3 1 2/ , , , .

       
n

ij i j ijP p F F F FF                  (59) 

Осредненное определяющее соотношение (37) для данного слу-
чая получаем осреднением выражения (59) 

   
( )

0 3 1 2
3 1 2/ , , , .

       
n

ij i j ijP p F F F FF                    (60) 

Выражение (37) для компонент осредненного тензора напряже-
ний Коши принимает вид 

 
( )

0 3 1 2
3 1 2, , , , 1, 2, 3.      

     
n

T p F F F FF             (61) 

Используем граничные условия на боковых поверхностях компо-

зита 22 33 0 T T  при одноосном растяжении. В силу того, что 

напряжения T  в пластине однородны, из граничных условий 

и формул (55) и (61) 
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 
( )

11 1 011 3 1 2
1 3 1 2, , , ,   

n

T p F F F FF  

 
( )

0 3 1 2
3 1 20 ,  1 2, , , , , 

     
n

p F F F FF                  (62) 

1 2 3
1 2 3 1F F F  

получаем систему четырех уравнений относительно четырех неиз-

вестных: 11,T  2
2 ,F  3

3 ,F  ,p  являющихся функциями от 1
1 .F  Решая эту 

систему, находим диаграммы деформирования  

 11 11 1
1 ,T T F   11 11 1

1P P F                            (63) 

композита при одноосном растяжении. 
Результаты численного моделирования. В качестве конкрет-

ных моделей нелинейно-упругих сред была рассмотрена модель не-
сжимаемых сред класса Bv [16] (модель Муни, для которой индекс n  

принимает значение 5). Тензорная функция  
( )

0 ,
n

ij k
lFF  для нее 

имеет явное выражение через градиент деформации 

             
( )

0
1, 2 1 1 1 ,           

V
ij k ji ki kl jl

lF I F F F FF  (64) 

где 1 
ki kiI F F  — первый инвариант меры деформации 

( )

;
V

il ki klG F F  

    и     — упругие константы слоев. Вычислять собственные 

векторы  
0


i k

lQ F  и собственные значения   для этой модели не тре-

буется. 
Для численного решения системы (62) был использован метод ми-

нимизации численной ошибки путем покоординатного спуска [8, 9]. 
Ячейка периодичности композита состояла из трех слоев. Были вы-
браны следующие упругие константы слоев: 

 слой 1: 1 0,8   МПа, 1 1,0,   относительная толщина слоя 

1 0, 2;h  

 слой 2: 2 1, 4   МПа, 2 1,0,   относительная толщина слоя 

2 0,6;h  

 слой 3: 3 0,7   МПа, 3 0,9,   относительная толщина слоя 

3 0, 2.h  
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Графики функций (63), построенные с помощью описанного вы-
ше алгоритма для отдельных слоев композита и для самого компози-
та, отражены на рис. 1. 

 

Рис. 1. Диаграммы деформирования  1
11 1P F  для слоистого компо-

зита (К) и отдельных составляющих его слоев (1, 2 и 3), построен- 
ные с помощью разработанного метода 

 

Функция  1
11 1P F  для композита располагается между соответ-

ствующими функциями для отдельных его слоев: слоя 2 c более вы-
сокой жесткостью и слоев 1 и 3 с меньшей жесткостью, чем сам ком-
позит. 

Были проведены расчеты для трех значений относительных тол-
щин слоев композита: 2 0,8,h  2 0,6h  и 2 0, 4,h  где 2h  — толщи-

на «жесткого» слоя, толщины слоев 1 и 2 были одинаковы. Результа-
ты расчетов приведены на рис. 2. С увеличением толщины жесткого 
слоя диаграмма деформирования композита приближается к диа-
грамме деформирования жесткого слоя. 

На рис. 3 представлены результаты расчетов напряжений  11 P  

в слоях композита с толщиной 2 0,6h  при фиксированном значении 
1

1 2,0F . Напряжения постоянны по каждому слою, но меняются при 

переходе от слоя к слою; наибольшие их значения возникают в жест-

ком слое, превышая среднее напряжение  1
11 1P F  в композите 

 1
11 1P F . 
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Рис. 2. Диаграммы деформирования  1
11 1P F  для слоистого компо-

зита,  построенные  с  помощью разработанного метода, при разных  

относительных толщинах 2h  второго (жесткого) слоя: 

1 — 0,8; 2 — 0,6; 3 — 0,4 

 

 

Рис. 3. Распределение напряжения  11 P  по толщине слоистого 

композита с ЯП из трех слоев при продольном растяжении 
 
Заключение. Предложен вариант метода асимптотического 

осреднения для слоистых упругих несжимаемых композитов с ко-
нечными деформациями и периодической структурой. Использовано 
универсальное представление определяющих соотношений для ком-
плекса различных моделей сред с конечными деформациями. 

Разработан алгоритм решения задачи на ячейке периодичности для 
слоистых несжимаемых композиционных материалов с конечными де-
формациями, позволяющий рассчитывать эффективные диаграммы де-
формирования слоистых композитов с конечными деформациями, свя-
зывающие компоненты осредненных тензоров напряжений Пиолы — 
Кирхгофа и градиента деформаций, а также напряжения в слоях компо-
зита. 

Приведенный пример построения диаграммы деформирования 
композита с конечными деформациями при одноосном растяжении 
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показывает реализуемость предложенного алгоритма, и его возмож-
ности для моделирования нелинейно-упругих свойств композитов по 
свойствам составляющих его слоев.  

Разработанный метод расчета эффективных диаграмм деформи-
рования и напряжений в слоях композита может быть использован 
при проектировании эластомерных композитов с заданными свой-
ствами. 
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Incompressible layered composites with finite deformations 
on the basis of the asymptotic averaging method 

© Yu.I. Dimitrienko, E.A. Gubareva, D.Yu. Kolzhanova, S.B. Karimov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The article considers the modeling results of incompressible layered composites with fi-
nite strains deformation according to the individual layers characteristics.  
The article proposes an asymptotic averaging method version for layered nonlinearly 
elastic incompressible composites with finite deformations and periodic structure. We are 
using a universal representation of the defining relations for incompressible composite 
layers, proposed by Yu.I. Dimitrienko, which allows us to simulate simultaneously for  
a complex of various nonlinear elastic media models characterizedby the choice of a pair 
of energy tensors. We proved that if all composite layers are incompressible, the compo-
site as a whole is also an incompressible, but anisotropic, medium. The article considers 
the problem of laminated plate uniaxial stretching from incompressible layers with finite 
deformations. Using the developed method, we calculated the effective deformation dia-
grams connecting the averaged Piola — Kirchhoff stress tensors components and the 
strain gradient, as well as the stress distribution in the composite layers.  
The developed method for calculating effective deformation diagrams and stresses in 
composite layers can be used in the design of elastomeric composites with specified 
properties. 
 
Keywords: layered composites, finite deformations, incompressible media, asymptotic 
averaging method, Piola — Kirchhoff stress tensor, strain gradient, universal models of 
determining relations, deformation diagrams 
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