doi: 10.18698/2309-3684-2016-3-93109
Представлен анализ некоторых факторов, влияющих на выполнение параллельной реализации модели общей циркуляции атмосферы на многопроцессорной электронно-вычислительной машине кластерного типа. Рассмотрены несколько модификаций первоначального параллельного кода этой модели, направленных на улучшение его вычислительной эффективности, баланса загрузки процессоров. Осуществлена модификация численной схемы по времени модели общей циркуляции атмосферы для возможности осуществления параллельных расчетов блоков динамики и физики. Предлагаемая процедура используется вместе с процедурами распараллеливания блоков динамики и физики на основе декомпозиции расчетной области, что позволяет оптимизировать загрузку процессоров и повысить эффективность распараллеливания. Результаты применения схемы баланса загрузки блока физики рассмотренной модели дают возможность усложнения блока физики без увеличения общего времени счета. Приведены результаты численных экспериментов.
[1] Монин А.С. Введение в теорию климата. Ленинград, Гидрометеоиздат, 1982, 296 с.
[2] Climate Change 2013. The Physical Science Basis. The Physical Science Basis. New York, Cambridge University Press, 2013. Available at: http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
[3] Моисеев Н.Н., Александров В.В., Тарко А.М. Человек и биосфера. Москва, Наука, 1985, 272 с.
[4] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Computational Modeling of Conjugated Aerodynamic and Thermomechanical Processes in Composite Structures of High-speed Aircraft. Applied Mathematical Sciences, 2015, vol. 9, no. 98, pp. 4873–4880. http://dx.doi.org/10.12988/ams.2015.55405
[5] Димитриенко Ю.И., Коряков М.Н., Захаров А.А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, № 4, с. 75–91.
[6] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Application of Finite Difference TVD Methods in Hypersonic Aerodynamics. Finite Difference Methods, Theory and Applications. Lecture Notes in Computer Science, 2015, vol. 9045, pp. 161–168. DOI 10.1007/978-3-319-20239-6_15
[7] Димитриенко Ю.И., Захаров А.А., Коряков М.Н., Сыздыков Е.К. Моделирование сопряженных процессов аэрогазодинамики и теплообмена на поверхности теплозащиты перспективных гиперзвуковых летательных аппаратов. Известия высших учебных заведений. Машиностроение, 2014, № 3, с. 23–34.
[8] National Aeronautics and Space Administration: Earth Systems Science: A Closer View. Report of the Earth Systems Science Committee NASA Advisor Council NASA. Washington, NASA, 1988, 208 p.
[9] Белов П.Н., Борисенков Е.П., Панин Б.Д. Численные методы прогноза погоды. Ленинград, Гидрометеоиздат, 1989, 375 с.
[10] Parkhomenko V.P., Lang T.V. Improved computing performance and load balancing of atmospheric general circulation model. Journal of Computer Science and Cybernetics, 2013, vol. 29, no. 2, pp. 138–148.
[11] Пархоменко В.П. Реализация глобальной климатической модели на многопроцессорной ЭВМ кластерного типа. Параллельные вычислительные технологии. Труды Международной научной конференции «Параллельные вычислительные технологии 2009» (Нижний Новгород, 30 марта – 3 апреля 2009 г.). Челябинск, изд-во ЮУрГУ, 2009, 839 с.
[12] Пархоменко В.П. Модель климата с учетом глубинной циркуляции Мирового океана. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2011, спец. вып. «Математическое моделирование», с. 186–200.
[13] Пархоменко В.П. Глобальная модель климата с описанием термохалинной циркуляции Мирового океана. Математическое моделирование и численные методы, 2015, № 1, 94–108.
[14] Пархоменко В.П. Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля. Математическое моделирование и численные методы, 2014, № 2, c. 115–126.
[15] Пархоменко В.П. Численные эксперименты на глобальной гидродинамической модели по оценке чувствительности и устойчивости климата. Инженерный журнал: наука и инновации, 2012, № 2. DOI 10.18698/2308-6033-2012-2-45
[16] Пархоменко В.П. Квазислучайный подход для определения оптимальных наборов значений параметров климатической модели. Инженерный журнал: наука и инновации, 2013, № 9. DOI 10.18698/2308-6033-2013-9-962
[17] Parkhomenko V.P. Sea Ice Cover Sensitivity Analysis in Global Climate Model. Research Activities in Atmospheric and Oceanic Modelling. Geneva, World Meteorological Organization, 2003, vol. 33, pp. 7.19–7.20.
[18] Arakawa A., Lamb V. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. Methods in Computational Physics, 1977, vol. 17, pp. 174–207.
[19] Пархоменко В.П. Проблемы реализации и функционирования глобальной климатической модели на параллельных вычислительных системах. Труды IV Международной конференции «Параллельные вычисления и задачи управления» (Москва, 27–29 окт. 2008 г.). Москва, Институт проблем управления им. В.А. Трапезникова РАН, 2008, с. 122–141.
[20] Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. Санкт-Петербург, БХВ-Петербург, 2002, 608 с.
[21] Climate Change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel Climate Change, Paris, 2007, 989 p.
Пархоменко В. П. Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы. Математическое моделирование и численные методы, 2016, №3 (11), c. 93-109
Количество скачиваний: 622