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Представлен анализ некоторых факторов, влияющих на выполнение параллельной 
реализации модели общей циркуляции атмосферы на многопроцессорной элек-
тронно-вычислительной машине кластерного типа. Рассмотрены несколько мо-
дификаций первоначального параллельного кода этой модели, направленных на 
улучшение его вычислительной эффективности, баланса загрузки процессоров. 
Осуществлена модификация численной схемы по времени модели общей циркуля-
ции атмосферы для возможности осуществления параллельных расчетов блоков 
динамики и физики. Предлагаемая процедура используется вместе с процедурами 
распараллеливания блоков динамики и физики на основе декомпозиции расчетной 
области, что позволяет оптимизировать загрузку процессоров и повысить эф-
фективность распараллеливания. Результаты применения схемы баланса загрузки 
блока физики рассмотренной модели дают возможность усложнения блока физи-
ки без увеличения общего времени счета. Приведены результаты численных экспе-
риментов.  
 
Ключевые слова: модель общей циркуляции атмосферы, особенности параллель-
ной реализации, численные эксперименты. 

 
Введение. Климат [1] является одним из основных природных 

ресурсов, определяющих последствия для экономики, сельского хо-
зяйства, энергетики, демографии и т. д. Результаты исследований 
в области климата [2] позволяют предположить, что деятельность че-
ловека — важный климатический фактор, и последствия антропоген-
ного воздействия на климатическую систему в ближайшие десятиле-
тия могут быть весьма существенными. Много неопределенностей 
остается относительно сведений об изменениях климата, особенно 
в региональном масштабе. Кроме того, крайне неблагоприятные со-
циально-экономические последствия регионального и даже глобаль-
ного масштаба могут быть вызваны естественными климатическими 
колебаниями. 

Необходима разработка научных основ и системы мер по ограни-
чению негативных последствий экономической деятельности на 
окружающую среду для сохранения энергии и ресурсов, реструкту-
ризации экономики и адаптации к новым природным и климатиче-
ским условиям. Такие основы могут быть разработаны только при 
совместном изучении глобальных экологических изменений и клима-
та, что позволит осуществить переход к устойчивому развитию [3].  
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Математическое и численное моделирование является мощным 
инструментом для исследования климатической системы и прогнози-
рования изменений климата. Современное моделирование осуществ-
ляется с помощью мощных программных средств, в том числе отече-
ственных, для решения задач нестационарной газодинамики 
многокомпонентного газа различными численными методами [4–7]. 
Грубые оценки показывают, что для расчетов состояния климатиче-
ской системы на 100 лет на современной однопроцессорной электрон-
но-вычислительной машине (ЭВМ) необходимо от суток до несколь-
ких месяцев в зависимости от сложности и подробности модели. 
Следовательно, моделирование климата — одна из задач, требующая 
для своего решения применения многопроцессорных ЭВМ. 

Наиболее сложными и адекватными моделями для описания кли-
матической системы являются модели общей циркуляции атмосферы 
и океана. В настоящее время разработаны многочисленные модели 
общей циркуляции атмосферы [2], в которых учтены все существен-
ные процессы в атмосфере. Модели достаточно хорошо описывают 
циркуляцию атмосферы, температурный режим, осадки, поле давле-
ний, облачность и т. д. Однако слабым местом этих моделей является 
адекватное воспроизведение взаимодействия атмосферы с подстила-
ющей поверхностью, региональных особенностей климата, а также 
описания облачности и связанных с ней мелкомасштабных конвек-
тивных процессов в атмосфере.  

Как известно [8], облачно-радиационная обратная связь является 
одним из важнейших факторов формирования состояния атмосферы. 
Характерный масштаб циклонических образований составляет не-
сколько сот километров, атмосферных фронтов — десятки километ-
ров, отдельных кучевых облаков — порядка одного километра, а мик-
рофизических процессов в облаках — порядка нескольких метров. 
Масштаб вертикальных конвективных движений во влажной атмосфе-
ре колеблется от нескольких сотен метров до десяти километров.  

Таким образом, для адекватного описания только крупномас-
штабных течений в атмосфере необходимы расчетная сетка с гори-
зонтальным шагом порядка 50 км и несколько десятков уровней по 
вертикали в тропосфере и стратосфере [9] при условии идеального 
описания подсеточных процессов.  

Увеличение мощности ЭВМ является одним из важнейших требо-
ваний для более надежных результатов, поэтому в работе рассмотрим 
методы распараллеливания для решения поставленных задач [10]. 

Описание модели общей циркуляции атмосферы и процедура 
распараллеливания. Модель климата Вычислительного центра РАН 
включает атмосферный блок, реализованный на базе модели общей 
циркуляции атмосферы (ОЦА) [11–16] с параметризацией ряда под-
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сеточных процессов, океанский блок, представляющий собой инте-
гральную модель термохалинной циркуляции океана и модель эво-
люции морского льда [12–14]. Взаимодействие между блоками осу-
ществляется в интерактивном режиме. Модель атмосферы описывает 
тропосферу, расположенную ниже предполагаемого уровня изобари-
ческой тропопаузы.  

По вертикали в модели использована система координат σ  [9, 17]: 

,T

S T

p p
p p

−p =
−

                                              (1) 

где p  — давление; Tp  — постоянное давление на уровне тропопау-
зы; Sp  — переменное давление у поверхности Земли.  

Уравнение горизонтального импульса запишем в векторной форме: 

( ) ( ) ( ) ,f
t

∂ ∂π + ∇π + π σ + × π + π∇Φ + σπα∇π = π
∂ ∂σ

V V V k V F         (2) 

где  

( )1 cos
cos

ϕλ ∂ ∂∇ = + ϕ α ϕ ∂λ ∂ϕ 

AA A  

для вектора ( ), ,λ ϕ=A A A  где λ  — долгота и ϕ  — широта точки. 

Здесь ;S Tp pπ = −  V — вектор горизонтальной скорости; / ;dd t= σσ  
f — параметр Кориолиса; k — вертикальный единичный вектор; Φ — 
геопотенциал; F — вектор горизонтальной силы трения на единицу 
массы воздуха; α — удельный объем.  

Термодинамическое уравнение энергии имеет вид: 

( ) ( ) ( ) ,p p pc T c T c T H
t t

∂ ∂ ∂π π + ∇ π + πp  − παp + ∇π = π ∂ ∂p ∂ 
V V 

         (3) 

где pc  — удельная теплоемкость сухого воздуха; T — температура 

воздуха; H  — скорость выделения тепла в единице массы воздуха. 
Уравнения неразрывности и переноса влаги, соответственно: 

( ) ( ) 0,
t

∂π ∂+ ∇ π + πσ =
∂ ∂σ

V                                     (4) 

( ) ( ) ( ) ,q q q Q
t

∂ ∂π + ∇ π + π σ = π
∂ ∂σ

V 

                               (5) 

где q — отношение смеси водяного пара; Q  — скорость генерации 
влаги в единице массы воздуха. 
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Уравнения (2)–(5) являются прогностическими (т. е. эволюцион-
ными) для определения зависимых переменных V, T, π  и q. К ним 
добавляют уравнение состояния: 

,RT pα =                                                  (6) 

где R — газовая постоянная для влажного воздуха. Диагностическое 
гидростатическое уравнение: 

0.∂Φ + πα =
∂σ

                                               (7) 

Уравнения дополняют соответствующие граничные условия; таким 
образом, получается замкнутая динамическая система в σ-координатах. 
Для численного решения атмосфера разбивается на слои в верти-
кальном направлении пропорционально массе (давлению). По гори-
зонтали используется равномерная по широте и долготе конечно-
разностная сетка. 

Модель ОЦА — пакет программ, моделирующих основные фи-
зические процессы в атмосфере [3, 9]. Можно выделить два главных 
компонента программы: динамический блок, в котором посредством 
конечных разностей вычисляют течения жидкости, описываемые 
примитивными уравнениями (2)–(7), и физический блок (блок источ-
ников). В последнем вычисляют влияние мелкомасштабных процес-
сов (таких как потоки солнечной и тепловой радиации, конвекция, 
конденсация, испарение, выпадение осадков) на процессы, которые 
разрешаются сеткой. Результаты, полученные в физическом блоке, 
используют в динамическом блоке как внешние источники (члены F, 
H  и Q ) для расчета течений и термодинамики.  

Численная схема модели ОЦА использует трехмерную разнесен-
ную сетку для скоростных и термодинамических переменных (по-
тенциальная температура, давление, удельная влажность и т. д.), ко-
торая является C-сеткой Аракавы [18] в горизонтальном (широта, 
долгота) направлении с относительно небольшим числом вертикаль-
ных слоев (обычно значительно меньше, чем число горизонтальных 
точек сетки).  

Динамический блок состоит из двух главных компонент: филь-
трования и собственно конечно-разностных вычислений. Операция 
фильтрования необходима на каждом временном шаге в областях, 
близких к полюсам, чтобы гарантировать, что эффективный размер 
сетки там удовлетворяет условию устойчивости для явной схемы по 
времени [18]. Операция основана на разложении потоков в ряд Фурье 
с обрезанием коротковолновой части спектра и существенно исполь-
зует все точки географической параллели. 
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В параллельной реализации модели используют разбиение по 
процессорам двумерной сетки в горизонтальной плоскости (метод 
декомпозиции). Выбор обусловлен тем, что вертикальные процессы 
сильно связывают точки сетки, что делает распараллеливание менее 
эффективным в вертикальном направлении, число точек сетки в вер-
тикальном направлении является обычно небольшим. Каждая подоб-
ласть в такой сетке — прямоугольная и содержит все точки сетки 
в вертикальном направлении. В этом случае есть в основном два типа 
межпроцессорных обменов [19, 20]. Обмены данными между логиче-
ски соседними процессорами (узлами) необходимы при вычислениях 
конечных разностей, а удаленные обмены данными — в частности, 
для осуществления операции спектрального фильтрования.  

Соотношение затрат времени главных блоков исходной парал-
лельной программы модели ОЦА при использовании 4×5×9 градусов 
разрешения, которое содержит 46×72×9 точек, показано в табл. 1. 

Таблица 1 

Соотношение затрат времени счета основных блоков модели 

Число процессоров Динамический блок, % Физический блок, % 

1 63 33 
8 67 30 
16 70 27 

 
Для счета был использован кластер МВС-6000IМ (256 CPU) 

(64-разрядные процессоры Intel® Itanium-2® 1,6 ГГц, при двунаправ-
ленном обмене данными между двумя вычислительными машинами 
с использованием протоколов MPI достигается пропускная способ-
ность на уровне 450–500 Мбайт/с). Вычислительные модули связаны 
между собой высокоскоростной коммуникационной сетью Myrinet 
(пропускная способность 2 Гбит/с), транспортной сетью Gigabit 
Ethernet и управляющей сетью Fast Ethernet. Коммуникационная сеть 
Myrinet предназначена для высокоскоростного обмена между вычис-
лительными модулями в ходе вычислений. Программа была реализо-
вана также на сервере Вычислительного центра им. А.А. Дороницына 
Российской академии наук (ВЦ РАН) с общей памятью (двухпроцес-
сорный, четырехъядерный, на базе Intel Xeon DP 5160, частота 3 ГГц, 
4 Гбайт оперативной памяти). Были произведены те же измерения 
для одного, двух и четырех процессов. 

Как следует из табл. 1, основная часть вычислительных затрат 
модели ОЦА связана с блоками динамики и физики с исключенными 
процедурами ввода–вывода. Эти процедуры выполняются только 
один раз, тогда как главная часть повторяется многократно по време-
ни и доминирует по затратам времени выполнения. При сравнении 
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этих двух блоков можно видеть, что динамическая часть занимает 
основное время счета, особенно при большом количестве узлов. На 
масштабируемость параллельной программы влияет отношение за-
трат обменов данными к затратам вычислений и степень несбаланси-
рованности загрузки процессоров в программе. Результаты анализа 
и оценок затрат времени показывают, что затраты спектральной про-
цедуры составляют заметную часть в параллельной программе моде-
ли ОЦА, особенно при увеличении числа узлов [20]. 

Модификация первоначального параллельного кода модели 
для улучшения его вычислительной эффективности и баланса 
загрузки процессоров. Как было отмечено выше, в модели ОЦА 
можно выделить два главных компонента — динамический и физи-
ческий блоки. Результаты, полученные в физическом блоке, исполь-
зуют в динамическом блоке как внешние источники для вычисления 
течения.  

Подлежащие интегрированию по времени прогностические урав-
нения (2)–(5) для основных искомых функций (горизонтальных ком-
понент скорости V, температуры T, отношения смеси водяного пара q, 
переменной ,S Tp pπ = −  определяющей давление Sp ) можно записать 
в точке ( ),i j  горизонтальной конечно-разностной сетки в виде: 

( ) ( )
, 

,
i j

D S
t

∂ψ = ψ + ψ
∂

 

где ψ  — любая из основных искомых функций. 
Здесь через ( )S ψ  обозначены «источники» (определяемые в блоке 

физики) в правых частях уравнений (2)–(5), к которым отнесены сила 
трения F в уравнениях движения (2), диабатическое нагревание H  
в уравнении энергии (3) и источники влаги Q  в уравнении переноса 
водяного пара (5). Они являются локальными, т. е. не содержат произ-
водных по горизонтали и в значительной степени определяются вер-
тикальными процессами. Все остальные («динамические») члены 
включены в ( )D ψ  и содержат производные по горизонтали. 

Для решения прогностических уравнений в исходном скалярном 
варианте программы используют метод расщепления по физическим 
процессам, представляющий собой явный шестишаговый метод ин-
тегрирования по времени. При его использовании сначала выполня-
ют шесть шагов по времени с шагом Dt∆  с учетом влияния только 
динамических членов с различной аппроксимацией пространствен-
ных производных, а затем один шаг 6 Dt t∆ = ∆  с учетом влияния 
только источников (блок физики). 
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Таким образом, концептуально исходная схема интегрирования 
по времени такова: 

I этап ( )1 0 0 ;ψ = ψ + ∆ ψD tD  

II этап ( )1 1 0 1 ,S DtSψ = ψ = ψ + ∆ ψ  

где 1
Dψ  — значение ψ  в момент времени t t+ ∆  после учета динами-

ческих членов; 0ψ  — значение в момент времени t; 1 1
Sψ = ψ  — окон-

чательное значение ψ  (после учета влияния источников) в момент 
времени .t t+ ∆  Совокупность I и II этапов обеспечивает аппроксима-
цию рассматриваемых уравнений. 

Предлагаемый метод распараллеливания предусматривает одно-
временный расчет вклада физики и динамики на двух группах про-
цессоров, соответственно. Реализация метода требует изменения 
численной схемы по времени, которое состоит в одновременном рас-
чете динамики и физики на различных группах процессоров с одних 
и тех же входных данных:  

I группа ( )0 0 ;ψ = ψ + ∆ ψD tD  

II группа ( )0 0 .S tSψ = ψ + ∆ ψ  

По окончании циклов получаем значения основных переменных 
Dψ  на первой и Sψ  на второй группе процессоров на следующем 

шаге по времени. После этого процессоры обмениваются данными 
и на каждой из групп процессоров по формуле 1 0

D Sψ = ψ + ψ − ψ  
рассчитывают окончательные значения искомых функций в момент 
времени .t t+ ∆  Легко видеть, что при этом достигается аппроксима-
ция уравнений, но понятно, что результаты исходной и модифициро-
ванной схем будут отличаться. 

В качестве средства реализации распараллеливания использована 
библиотека MPI. В настоящее время MPI является наиболее распро-
страненным средством распараллеливания, его реализации есть прак-
тически на всех современных многопроцессорных вычислительных 
машинах, что позволяет обеспечить переносимость программы [21]. 

Исходная программа была модифицирована в соответствии с вы-
сказанными выше соображениями. Для проверки корректности мето-
да по модифицированному и старому вариантам программы были 
проведены модельные расчеты до установления, имеющие одинако-
вые начальные условия.  

Далее на рисунках приведены некоторые результаты сравнения. 
На рис. 1 показаны зависимости средней температуры и баланса ра-
диации на верхней границе атмосферы от времени для исходной 
и модифицированной схем. Указанные средние за сутки и по всему 
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земному шару величины демонстрируют хорошее совпадение ре-
зультатов, учитывая сильную изменчивость характеристик атмосфе-
ры на коротком интервале в одни сутки.  

 
Рис. 1. Средние глобальные температура атмосферы (а) 
и  баланс  радиации  на  верхней границе атмосферы (б) 

в зависимости от времени: 
1 — для исходной схемы; 2 — для модифицированной 

схемы 
 
На рис. 2 показаны графики зависимости от широты зональной 

компоненты скорости и приземной температуры воздуха, осреднен-
ных по долготе для января. Анализ демонстрирует очень хорошее 



Алгоритм увеличения вычислительной производительности и баланса… 

101 

 
Рис. 2. Зависимость от широты зональной компоненты скорости (а) и средней 

приземной температуры воздуха (б) для января: 
1 — для исходной схемы; 2 — для модифицированной схемы 

 
совпадение температуры для обоих сезонов, скорости имеют отличия 
в зимний период в областях сильных градиентов. 

Отметим общую особенность распределений основных климати-
ческих характеристик, рассчитанных по исходной и модифицирован-
ной схемам: наибольшие отличия результатов можно наблюдать 
в средних и высоких широтах в зимний период. По-видимому, это 
связано с выпадением осадков в виде снега и интенсивными нестаци-
онарными конвективными процессами в атмосфере. Отличия в при-
земных температурах в более чем 90 % ячеек составляют менее 2 °С. 
Только в двух ячейках зимой в Северном полушарии над материком 
разница составляет 10 °С. Для зимы в Южном полушарии наблюда-
ется похожая картина: заметные отличия существуют в трех ячейках 
в Антарктиде. 

Отличия в приземном давлении не превышают 15 мбар в не-
скольких ячейках и в основном составляют менее 5 мбар. 

На рис. 3 показаны географические распределения разности тем-
ператур воздуха для июля на уровнях 400 и 800 мбар соответственно. 
На уровне 400 мбар отличия не превышают 2 °С везде за исключени-
ем одной точки, где составляют 6 °С. На уровне 800 мбар — подоб-
ная картина. Можно утверждать, что отличия в результатах более 
существенны в приземных областях. 

Анализ показывает, что результаты расчетов по модифицирован-
ной расчетной схеме дают удовлетворительные результаты и воз-
можно ее применение. В нераспараллеленной программе время счета 
блока физики составляет 38 %, а блока динамики — 62 %. Значит, на   
распараллеленной   программе   может   быть   достигнуто  ускорение 
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Рис. 3. Изолинии разностей температуры воздуха на уровне 400 (а) и 800 мбар (б), 
рассчитанных по исходной и модифицированной схемам (июль) 

 
приблизительно в полтора раза. 
Предлагаемую процедуру ис-
пользуют вместе с процедурами 
распараллеливания блоков дина-
мики и физики на основе деком-
позиции расчетной области. 
Здесь можно применить разра-
ботки, описанные в работах [10, 
11, 20], что позволяет оптимизи-
ровать загрузку процессоров и 
повысить эффективность распа-
раллеливания (рис. 4). 

 

Рис. 4. Зависимость ускорения от числа 
процессоров: 

1 — модифицированный метод; 2 — исход-
ный метод 
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Другая важная возможность применения метода — усложнение 
блока физики без увеличения общего времени счета. Рассмотрим че-
тыре численных эксперимента A, B, C и D с тем, чтобы продемон-
стрировать результаты: 

1) A — использована горизонтальная сетка 4×5 градусов, девять 
вертикальных уровней, исходный метод для блока физики; 

2) B — горизонтальная сетка 4×2,5 градуса для расчета пере-
менных в блоке физики, девять вертикальных уровней; 

3) C — горизонтальная сетка 4×2,5 градуса для расчета пере-
менных и 18 вертикальных уровней для радиационных и гидрологи-
ческих переменных в блоке физики; 

4) D — как в эксперименте C, но в два раза больше спектраль-
ных уровней в радиационной модели. 

В блоке динамики во всех экспериментах использована фиксиро-
ванная горизонтальная сетка 4×5 градусов. 

В табл. 2 показаны использованные распределения количества 
процессоров между блоками динамики и физики для указанных ва-
риантов расчетов.  

Таблица 2  

Распределение процессоров для численных экспериментов A, B, C и D 

Эксперимент A B C D 

Общее количество процессоров 16 22 28 34 
Процессоры для блока динамики 10 10 10 10 
Процессоры для блока физики 6 12 18 24 

 
Преимущества модифициро-

ванного метода, как показано 
далее, очевидны для экспери-
ментов с относительно большим 
количеством процессоров, ког- 
да большое количество обменов 
данными между процессорами 
существует в блоке динамики, а в 
блоке физики эта проблема отсут-
ствует. Такой эффект объясняет 
замедление исходного метода 
расчетов (рис. 5, 2) [20]. Количе-
ство процессоров, используемых 
для блока динамики в модифици-
рованном методе, является одина-
ковым для всех экспериментов, 
а увеличивающееся количество 

 
Рис 5. Ускорение счета для численных 

экспериментов A, B, C и D: 
1 — модифицированный метод; 2 — исход-

ный метод 
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процессоров, используемых для блока физики, обеспечивает более по-
дробное и точное описание физических процессов в модели в экспери-
ментах A, B, C и D. Такое преимущество модифицированного метода не 
сопровождается увеличением времени счета (рис. 5, 1). 

На основе описанной модели климата проведены численные экс-
перименты по прогнозированию изменения климата при увеличении 
концентрации углекислого газа в атмосфере, вызванного антропоген-
ными факторами. Для сценария роста концентрации CO2, предло-
женного в SRES IPCC [2, 21], рост глобальной температуры атмосфе-
ры к 2100 г. составит 2,7 °С, увеличение влажности — 11,5 %, 
уменьшение толщины морского льда — 25 %. Увеличение приземной 
температуры атмосферы значительнее над материками и в средних 
широтах и достигнет 5,2 °С в северных областях Евразии (рис. 6). 
В Южном полушарии потепление не превысит 2 °С. 

 

Рис. 6. Изменения температуры воздуха, сценарий A2 CO2 (январь) 
 
Существенно изменяется структура меридионального потока во-

ды в Атлантическом океане при реализации рассматриваемого сцена-
рия роста концентрации CO2. На рис. 7 представлена вертикальная 
структура среднего меридионального потока в Атлантическом океане 
для современных условий (а) и прогноз для 2100 г. при реализации 
сценария роста CO2 (б). Наблюдается существенное уменьшение по-
тока максимально на 27 % , что означает уменьшение потока теплых 
масс воды из экваториальной зоны в северные области Атлантики. 
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Рис. 7. Средний меридиональный поток воды в Атлантическом океане для совре-
менных условий (а) и прогноз на 2100 г. (б): 

ЮП — Южный полюс, Экв — экватор, СП — Северный полюс 

 
Заключение. Рассмотрены результаты применения вариантов 

параллельного алгоритма климатической модели для различных спо-
собов разбиения расчетной области с модифицированными комму-
никационными процедурами для обменов информацией между про-
цессорами в параллельном варианте модели общей циркуляции 
атмосферы. Реализована параллельная программа для различных 
способов разбиения расчетной области по процессорам в климатиче-
ской модели.  

Представлен анализ некоторых факторов, влияющих на выполне-
ние параллельной реализации модели ОЦА на многопроцессорной 
ЭВМ кластерного типа. Рассмотрено несколько модификаций перво-
начального параллельного кода модели, направленных на улучшение 
его вычислительной эффективности, баланса загрузки процессоров.  

Предложен модифицированный метод распараллеливания с од-
новременным расчетом вклада физики и динамики соответственно на 
двух группах процессоров с одних и тех же входных данных. Отме-
чено, что реализация метода требует изменения численной схемы по 
времени. По модифицированному и исходному вариантам програм-
мы проведены модельные расчеты, подтвердившие корректность это-
го метода. Исследована эффективность модифицированной схемы, 
при этом повышение точности расчета вклада физики не сопровож-
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дается увеличением времени счета. Представлены результаты по мо-
делированию прогнозов изменения климата при увеличении концен-
трации углекислого газа в атмосфере. 

Работа выполнена при поддержке Проектов РФФИ № 14-01-00308, 
№ 14-07-00037, № 16-01-0466. 
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The paper analyzes some factors affecting the parallel implementation performance of 
the atmospheric general circulation model designed on a cluster type multiprocessor 
computer. It considers several modifications of the initial parallel code of this model in 
order to improve both its computational efficiency and processor load balancing. The 
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numerical scheme is modified according to the time of the atmospheric general circula-
tion model for parallel computing of dynamics and physics blocks. The proposed proce-
dure is used along with the procedures of paralleling the dynamics and physics blocks 
based on decomposition of the computational domain. It allows both optimizing the pro-
cessor load balancing and increasing the paralleling efficiency. The data obtained while 
using the scheme for the physics block load balancing allow for complication of the phys-
ics block without increasing the total computational time. The results of numerical exper-
iments are given. 
 
Keywords: atmospheric general circulation model, parallel implementation features, 
numerical experiments. 
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