doi: 10.18698/2309-3684-2014-1-1835
Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).
Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35