517.9:519.6 Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки
doi: 10.18698/2309-3684-2014-3-111125
Рассмотрено появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории моделей «реакция — диффузия». Исследованы динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.
Малинецкий Г. Г., Фаллер Д. С. Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки. Математическое моделирование и численные методы, 2014, №3 (3), c. 111-125