Владислава Георгиевна Реш (РГУ им. А.Н. Косыгина, Москва) :


Статьи:

536.2 Конечно-разностная аппроксимация смешанных производных в уравнениях математической физики

Горский В. В. (МГТУ им.Н.Э.Баумана), Реш В. Г. (РГУ им. А.Н. Косыгина, Москва)


doi: 10.18698/2309-3684-2021-4-5879


Качественное численное решение уравнений математической физики неразрывно связано с обеспечением высокой точности аппроксимации всех дифференциальных операторов, входящих в эти уравнения. Решение этой задачи для первых и вторых производных функций, присутствующих в уравнениях математической физики, которые используются для описания самых различных научно-технических задач, подробно описано в многочисленных литературных публикациях. В тоже время смешанные производные не так уж часто присутствуют в уравнениях математической физики, вследствие чего вопросам, связным с качеством конечно-разностной аппроксимации этих производных не уделено должного внимания в литературных публикациях. Одной из основных причин, обусловливающих появления в уравнениях математической физики смешанных производных искомых функций, является применение аффинного преобразования исходной системы координат, обеспечивающего переход от области определения рассматриваемой задачи сложной формы к аналогичной области определения существенно более простой формы. Решению этой задачи и посвящены материалы данной статьи, в которой на примере рассмотрения относительно простой задачи аппроксимации смешанных производных на прямоугольной области определения искомой функции, дискретизация значений которой внутри этой области характеризуется постоянными шагами по каждому направлению. Приводится подробный вывод конечно-разностных соотношений, используемых для конечно-разностной аппроксимации смешанных производных во всех характерных узлах области определения функции, что предопределяет возможность развития предложенной методики на области определения различного типа.


Горский В.В., Реш В.Г. Конечно-разностная аппроксимация смешанных производных в уравнениях математической физики. Математическое моделирование и численные методы, 2021, № 4, с. 58–79