Виктор Филиппович Апельцин (МГТУ им.Н.Э.Баумана) :


Статьи:

537.876.4:517.958 Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения

Апельцин В. Ф. (МГТУ им.Н.Э.Баумана), Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-327


Рассмотрена двумерная краевая задача о прохождении плоской электромагнитной волны через периодическую слоистую среду, имеющую структуру одномерного фотонного кристалла. Структура имеет конечное число плоскопараллельных слоев, в которой каждая ячейка периодичности состоит из двух слоев с разными действительными значениями постоянной диэлектрической проницаемости и разными толщинами. Показано, что при некотором дополнительном условии, связывающем угол падения плоской волны, толщины слоев, частоту и диэлектрические проницаемости слоев, задача решается до конца в явном виде и приводит к простым выражениям для отраженного от структуры и прошедшего сквозь нее волновых полей. При этом в случае Н-поляризованного поля, в отличие от случая Е-поляризации, свойства данной среды зависят от отношения толщин слоев, умноженных на их диэлектрические проницаемости (при Е-поляризации — только от отношения толщин). В результате фотонный кристалл в зависимости от частоты поля может вести себя как идеально отражающая структура при тех же отношениях толщин слоев, при которых в случае Е-поляризации он становится волноведущей структурой, и наоборот. Произведено сравнение численных расчетов со случаем Е-поляризации.


Апельцин В. Ф., Мозжорина Т. Ю. Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения . Математическое моделирование и численные методы, 2014, №2 (2), c. 3-27



519.6 Сравнение методов вычисления значений специальных функций математической физики

Апельцин В. Ф. (МГТУ им.Н.Э.Баумана), Краснов И. К. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2020-4-111119


Проведен сравнительный анализ двух подходов к вычислению значений многочленов Чебышева с помощью рекуррентных процедур. Первый подход основан на рекурсии вверх по индексу, начиная с наименьшего значения индекса. Второй подход основан на рекурсии вниз, исходя из очевидных асимптотических выражений функций с высокими значениями индекса.


Апельцин В.Ф., Краснов И.К. Сравнение методов вычисления значений специальных функций математической физики. Математическое моделирование и численные методы, 2020, № 4, с. 111–119