Рубрика: "1.1.9. Механика жидкости, газа и плазмы (технические науки)"



519.634 Двумерная модель и метод расчета противотока во вращающемся вязком теплопроводном газе

Аксенов А. Г. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-4-314


Моделируется противоточный вихрь газовой центрифуги. Математическая модель движения вязкого теплопроводного газа включает в себя уравнение для плотности, скоростей и удельной энергии в цилиндрической геометрии. После введения сетки частные производные по пространству заменяются конечными разностями, и задача сводится к системе обыкновенных дифференциальных уравнений (ОДУ). Такая методика называется методом Прямых (Lines Method). Поскольку течение сверхзвуковое, а расчетная область включает в себя тонкие погранслои, то система ОДУ получается жесткой благодаря наличию разновременных процессов и затуханию. На языке математики это означает существенное различие собственных чисел матрицы Якоби и отрицательные действительные части. Поэтому для решения задачи оказалось целесообразным применение неявного метода Гира для системы ОДУ без расщепления задачи по физическим процессам и направлениям. Эффективным методом решения задачи обращения Якобина оказывается применение метода циклической редукции в варианте матричной прогонки. В качестве примера продемонстрировано противоточное течение, возникающие благодаря температурному градиенту.


Аксенов А.Г. Двумерная модель и метод расчета противотока во вращающемся вязком теплопроводном газе. Математическое моделирование и численные методы, 2023, № 4, с. 3–14.



519.63 Математическое моделирование инициирования детонации в канале с профилированным торцом с использованием параллельных вычисленийf

Лопато А. И. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-4-1526


Работа посвящена численным исследованиям инициирования детонации в газовой смеси в прямоугольном канале с профилированным торцом. Инициирование детонации происходит в результате взаимодействия ударных волн, которые образуются при отражении падающей ударной волны относительно малой интенсивности от торца канала. Математическая модель представляет собой систему уравнений газовой динамики, дополненную кинетикой Аррениуса для модельной водородно-кислородной смеси с табличными параметрами кинетики, отвечающими рабочему диапазону давлений и температур смеси. Численные расчеты проводятся с использованием метода конечных объемов. Построение расчетных сеток, состоящих из треугольных ячеек, осуществляется с использованием свободно распространяемого пакета SALOME. Численный алгоритм распараллелен методом декомпозиции расчетной области с использованием библиотеки METIS. Обмен сеточными функциями между вычислительными ядрами осуществляется с использованием функций библиотеки MPI. Рассмотрен вопрос ускорения реализованного в коде параллельного алгоритма по сравнению со случаем линейной зависимости ускорения от числа вычислительных ядер. Проведен ряд расчетов с использованием различного числа треугольных ячеек и сравнение картин инициирования детонации. Для всех проведенных расчетов время инициирования детонации примерно одинаковое. Основная разница в картинах детонации связана с разрешением структур, связанных с течением газа и физико-химическими реакциями в смеси.


Лопато А.И. Математическое моделирование инициирования детонации в канале с профилированным торцом с использованием параллельных вычислений. Математическое моделирование и численные методы, 2023, № 4, с. 15–26



533.6.011.5:533.6.011.72:519.6 Численное моделирование гистерезиса при обтекании плоского сопла

Максимов Ф. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-4-2746


Представлены результаты численного моделирования двумерных плоских ламинарных течений около двух наклонных пластин, образующих сужающее сопло вдоль вектора скорости набегающего сверхзвукового потока совершенного газа. Применена многоблочная вычислительная технология с использованием локальных адаптированных к поверхности тел криволинейных сеток, имеющих конечные области перекрытия с глобальной прямоугольной сеткой для всей расчетной области. Вязкие пограничные слои разрешаются на локальных сетках с использованием уравнений Навье ― Стокса, а эффекты аэродинамической интерференции сопутствующих ударно-волновых структур описываются в рамках уравнений Эйлера. В областях перекрытия сеток применяется интерполяция функций до границ перехода от одной сетки к другой. При последовательном увеличении или уменьшении числа Маха набегающего сверхзвукового потока обнаружена качественная перестройка структуры течения около сопла ― образуются либо отошедшая ударная волна и дозвуковая зона течения перед соплом, либо косые скачки около наклонных пластин. Выявлен гистерезис, выражающийся в том, что в определенной области чисел Маха структура течения и аэродинамическая нагрузка на сопло зависят не только от величины, но и от предыстории изменения числа Маха. Показана возможность изменения структуры течения с помощью введения в набегающий поток неоднородности по плотности.


Максимов Ф.А. Численное моделирование гистерезиса при обтекании плоского сопла. Математическое моделирование и численные методы, 2023, № 4,с. 27–46.



550.388.2 Математическое моделирование воздействия радиоизлучения на нижнюю ионосферу

Ступицкий Е. Л. (Институт автоматизации проектирования РАН), Моисеева Д. С. (Институт автоматизации проектирования РАН), Моторин А. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2024-1-6792


В работе представлены численные исследования параметров нижней ионосферы при воздействии на нее потока коротковолнового радиоизлучения различной частоты и мощности. Основное внимание уделяется взаимосвязи энергетических и кинетических параметров возмущенной D-области ионосферы в процессах, определяющих поглощение и трансформацию потока энергии радиолуча в пространстве и во времени. Показана возможность существенного различия в поведении параметров возмущенной области в дневное и ночное время как по величине, так и по пространственно-временному распределению. Ввиду отсутствия надежных значений констант скоростей ряда важных кинетических процессов, численные исследования велись поэтапно, с постепенным добавлением отдельных процессов и кинетических блоков, соответствующих вместе с тем определенному физическому содержанию. Показано, что главную роль при этом играют энергетические пороги для неупругих столкновений электронов с молекулами воздуха. Данный подход позволил обнаружить эффект возникновения автоколебательного режима изменения параметров, если главным каналом для потерь энергии в неупругих процессах является наиболее энергоемкий процесс – ионизация. Этот эффект может играть роль при плазменных исследованиях с использованием высокочастотных индукционных и емкостных разрядов. Представлены результаты расчетов ионизационных и оптических параметров возмущенной D-области для дневных условий. Получены значения электронной температуры, концентрации, коэффициентов излучения в видимом и инфракрасном диапазонах спектра для различных значений мощности радиолуча и его частоты в нижней ионосфере. Подробно исследовано влияние на электронную температуру и на общее поведение параметров энергии, которая расходуется электронами на возбуждение колебательных и метастабильных состояний молекул. Показано, что в ночных условиях, когда нижняя граница электронной концентрации поднимается до 80 км, а концентрация тяжелых частиц снижается на два порядка по сравнению со средней областью D-слоя, при достаточной мощности радиоизлучения может развиваться крупномасштабное газодинамическое движение. На основе численной схемы Мак-Кормака разработан алгоритм и выполнены двумерные газодинамические расчеты поведения параметров возмущенной области при определенных упрощениях кинетической части задачи.


Ступицкий Е.Л., Моисеева Д.С., Моторин А.А. Математическое моделирование воздействия радиоизлучения на нижнюю ионосферу. Математическое моделирование и численные методы, 2024, № 1, с. 67–92.



519.63 Математическое моделирование распространения пульсирующей волны газовой детонации в водородно-воздушной смеси с использованием детальной кинетики химических реакций

Лопато А. И. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2024-3-6580


Работа посвящена численному исследованию распространения пульсирующей волны газовой детонации. Математическая модель основана на системе уравнений Эйлера, записанной для многокомпонентного газа и дополненной моделью детальной кинетики химических реакций Petersen-Hanson. Данная модель кинетики является эффективной и работоспособной при описании процессов в водородно-воздушной и водородно-кислородной смеси. Вычислительный алгоритм основан на применении метода конечных объемов, ENO-реконструкции величин газодинамических параметров в расчетных ячейках, расчете потоков через грани ячеек с использованием метода AUSM, а также методов Рунге-Кутты для интегрирования по времени. Рассматривается случай прямого инициирования детонации у закрытого конца канала, заполненного стехиометрической водородно-воздушной смесью. Проведено математическое моделирование распространения пульсирующей детонационной волны. Исследуются механизмы, отвечающие за формирование высокочастотных и высокоамплитудных режимов пульсаций параметров лидирующей волны.


Лопато А.И. Математическое моделирование распространения пульсирующей волны газовой детонации в водородно-воздушной смеси с использованием детальной кинетики химических реакций. Математическое моделирование и численные методы, 2024, № 3, с. 65–80.