Рубрика: "2.5.16. Динамика, баллистика, управление движением летательных аппаратов (технические науки)"
doi: 10.18698/2309-3684-2024-2-8599
В данной работе рассматривается оптимизация управления перелетом малого космического аппарата (КА) на ионных двигателях на орбиту Венеры с учетом притяжения Земли и времени схода с геостационарной орбиты. При решении задачи были приняты следующие допущения: орбиты планет являются круговыми, лежащими в одной плоскости. Подробное рассмотрение влияния Венеры при приближении к орбите планеты не рассматривалось. Задача решается при помощи принципа максимума Понтрягина численным методом пристрелки. Моделирование движения КА было разбито на 3 этапа: разгон КА до скорости, позволяющей преодолеть притяжение Земли с помощью кратковременной работы реактивного двигателя, оптимизация управления вблизи Земли при расстоянии КА до Земли не более 950 000 км и на основной межорбитальный перелет между планетами. Алгоритм решения задачи реализован на языке программирования С++. Получено оптимальное управление углом действия вектора тяги. Анализ полученных результатов показал, что при минимизации времени достижения орбиты Венеры помимо существенного влияния на критерий эффективности наиболее протяженного межорбитального участка перелета принципиально важным является момент начала старта (схода с Земной орбиты).
Мозжорина Т.Ю., Закуражная А.А. Моделирование влияния времени схода с орбиты Земли на оптимальное управление перелетом малоразмерного КА на Венеру. Математическое моделирование и численные методы, 2024, № 2, с. 88–99.
doi: 10.18698/2309-3684-2024-3-8199
Рассматривается задача моделирования продольного движения самолета транспортной категории и параметрическая идентификация аэродинамических характеристик продольного движения: составляющих безразмерных коэффициентов аэродинамической подъемной силы и момента тангажа. Задача решается в классе модульных полуэмпирических динамических моделей, созданных объединением теоретического и нейросетевого моделирования. Работоспособность и практическая значимость моделей подтверждается результатами вычислительных экспериментов. Разработка нейросетевой модели продольного движения самолета выполнена на языке Python с использованием открытой программной библиотеки Tensorflow для машинного обучения и высокоуровневого API Keras в составе Tensorflow.
Крееренко С.С., Крееренко О.Д. Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow. Математическое моделирование и численные методы, 2024, № 3, с. 81–99.