doi: 10.18698/2309-3684-2021-3-2441
В статье рассматривается численная модель течения газа в пористой среде, содержащей частицы реакционноспособного компонента (полимера). При нагреве эти частицы расширяются, деформируются и заполняют порозное пространства, в результате чего проницаемость существенно снижается. Связь между пористостью и проницаемостью описывается формулой Козени-Кармана. Тогда вблизи нижней (входной) границы образуется область с низкой проницаемостью (агломерат), рост которой определяется условиями на боковой и входной границе. В результате расчетов получены характерные сценарии блокировки пористой среды при разных температурах нагрева. Показано, что при нагреве через стенку полимер разлагается, и пористая среда частично восстанавливает проницаемостью При нагреве поступающим газом агломерат намного более устойчив, поскольку он блокирует источник нагрева.
Madadian E., Crowe C., Lefsrud M. Evaluation of composite fiber-plastics biomass clinkering under the gasification conditions. Journal of Cleaner Production, vol.164, pp.137–145.
Bhoi P.R., Huhnke R.L., Kumar A., Indrawan N., Thapa S. Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy, vol.163, pp.513–518.
Ong Z., Cheng Y., Maneerung T., Yao Z., Tong Y.W., Wang C.-H., Dai Y. Co-gasification of woody biomass and sewage sludge in a fixed-bed downdraft gasifier. AIChE Journal, vol.61, iss.8, pp.2508–2521.
Ouadi M., Brammer J.G., Kay M., Hornung A. Fixed bed downdraft gasification of paper industry wastes. Applied Energy, 2013, vol.103, pp.692–699.
Siddiqui H., Thengane S.K., Sharma S., Mahajani S.M. Revamping downdraft gasifier to minimize clinker formation for high-ash garden waste as feedstock. Bioresource Technology, 2018, vol.266, pp.220–231.
Цветков М.В., Зюкин И.В., Фрейман В.М., Салганская М.В., Цветкова Ю.Ю. Возможные пути предотвращения шлакования золы при газификации торфа в режиме фильтрационного горения. Журнал прикладной химии, 2017, т. 90, № 10, с. 1392–1398.
Rabinovich O.S., Gurevich I.G. Analysis of filtration combustion during sorbent regeneration. Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 1995, vol.29, iss.4, pp.405–411.
Katagiri J., Konno Y., Yoneda J., Tenma N. Pore-scale modeling of flow in particle packs containing grain-coating and pore-filling hydrates: Verification of a Kozeny–Carman-based permeability reduction model. Journal of Natural Gas Science and Engineering, 2017, vol.45, pp.537–551.
Donskoy I.G., Svishchev D.A., Kozlov A.N., Penzik M.V. Thermal decomposition of polyethylene agglomerates in a porous medium. Journal of Physics: Conference Series, 2020, vol.1677, art.no.012037.
Peters B. Classification of combustion regimes in a packed bed of particles based on the relevant time and length scales. Combustion and Flame, 1999, vol.116, pp.297–301.
Nakamura M., Zhang H., Millrath K., Themelis N.J. Modeling of waste-to-energy combustion with continuous variation of the solid waste fuel. Energy Conversion and resources – 2003, 2003, pp.69–78.
Duffy N.T.M., Eaton J.A. Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD. Combustion and Flame, 2013, vol.160, iss.10, pp.2204–2220.
Yang Y.B., Nasserzadeh V., Goodfellow J., Swithenbank J. Simulation of channel growth in a burning bed of solids. Chemical Engineering Research and Design, 2003, vol.81, pp.221–232.
Hermansson, S., Thunman, H. CFD modelling of bed shrinkage and chanelling in fixed bed combustion. Combustion and Flame, 2011, vol.158, pp.988–999.
Gómez M.A., Porteiro J., Patiño D., Míguez J.L. CFD modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel, 2014, vol.117, iss. PART A, pp.716–732.
Mahmoudi A.H., Hoffmann F., Peters B. Detailed numerical modeling of pyrolysis in a heterogeneous packed bed using XDEM. Journal of Analytical and Applied Pyrolysis, 2014, vol.106, pp.9–20.
Khadilkar A., Rozelle P.L., Pisupati S.V. Models of agglomerate growth in fluidized bed reactors: Critical review, status and applications. Powder Technology, 2014, vol.264, pp.216–228.
Morris J.D., Daood S.S., Chilton S., Nimmo W. Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: a review. Fuel, 2018, vol.230, pp.452–473.
Gonzalez W.A., Perez J.F., Chapela S., Porteiro J. Numerical analysis of wood biomass packing factor in a fixed-bed gasification process. Renewable Energy, 2018, vol.121, pp.579–589.
Aldushin A.P., Ivleva T.P. Hydrodynamic instability of counterflow filtration combustion: mathematical modeling. International Journal of Self-Propagating High-Temperature Synthesis, 2015, vol.24, no.2, pp.49–55.
Lutsenko N.A. Numerical model of two-dimensional heterogeneous combustion in porous media under natural convection or forced filtration. Combustion Theory and Modelling, 2018, vol.22, pp.359–377.
Lutsenko N.A. Modeling of heterogeneous combustion in porous media under free convection. Proceedings of the Combustion Institute, 2013, vol.34, pp.2289–2294.
Донской И.Г. Математическое моделирование образования агломератов в реагирующей пористой среде с меняющейся проницаемостью. Вычислительные технологии, 2020, т. 25, № 2, с. 22-35.
Al-Salem S.M., Lettieri P., Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 2009, vol.29, pp.2625–2643.
Yan M., Antoni, Wang J., Hantoko D., Kanchanatip E. Numerical investigation of MSW combustion influenced by air preheating in a full-scale moving grate incinerator. Fuel, 2021, vol.285, art.no.119193.
Bockhorn H., Hornung A., Hornung U., Schawaller D. Kinetic study on the thermal degradation of polypropylene and polyethylene. Journal of Analytical and Applied Pyrolysis, 1999, vol.48, pp.93–109.
Попов Ю.А. Лучистая теплопроводность в слое с большой концентрацией частиц. Инженерно-физический журнал, 1978, т. 34, № 4, с. 703–705.
Bukhimirov V., Kolibaba O., Gabitov R. Experimental determination of thermal characteristics of municipal solid waste. MATEC Web of Conferences, 2016, vol.72, art.no.01047.
Donskoy I.G., Kozlov A.N., Kozlova M.A., Penzik M.V., Shamanskiy V.A. Thermochemical interaction of wood and polyethylene during co-oxidation in the conditions of thermogravimetric analysis. Reaction Kinetics, Mechanisms and Catalysis, 2020, vol.131, iss.2, pp.845-857.
Донской И.Г. Численное моделирование процессов образования, роста и разложения агломератов в пористой среде при разных режимах нагрева. Математическое моделирование и численные методы, 2021, № 3, с. 24–41.
Количество скачиваний: 273