621.833.51 Моделирование динамики планетарного перемешивающего устройства с неравномерным вращательным движением рабочего органа

Prikhodko A. A. (Kuban State Technological University), Kopteva A. A. (K.G. Razumovsky Moscow State University of technologies and management)

SINGLE-MASS DYNAMIC MODEL, PLANETARY GEAR, ELLIPTICAL GEARS, LAW OF MOTION, IRREGULAR MOTION, STIRRED TANK


doi: 10.18698/2309-3684-2020-1-88102


Article presents the results of mathematical modeling of the dynamics of a stirred tank with irregular motion of the impeller. The design of the apparatus with a stirrer is considered as a mechanical system with one degree of freedom, which is based on proposed by the authors planetary gear with elliptical wheels. The solution of the differential equation of motion of the stirred tank is proposed to be carried out by two methods: the energy-mass method and using the third-order Hermite interpolation function. There is presented a kinematic model of the mechanism, which describes the relationship between the geometric parameters of the links and allows you to bring the forces, masses and moments to the initial link. As an example, an analysis of the stirred tank according to the given initial data is carried out, there are calculated the moment of resistance on the impeller, the driving moment and the moment of inertia of the flywheel, which are of great importance at the design stage of the machine. The laws of motion of the input link are determined and constructed without taking into account and taking into account the installation of the flywheel. The convergence of the results obtained by various methods is confirmed.


[1] Braginskiy L.N., Begachev V.I., Barabash V.M. Peremeshivanie v zhidkikh sredakh: Fizicheskie osnovy i inzhenernye metody rascheta [Mixing in liquid media: Physical fundamentals and engineering methods of calculation]. Leningrad, Khimiya Publ., 1984, 336 p.
[2] Mudrov A.G. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta ⸺ News of the KSUAE, 2018, no. 1, pp. 226–233.
[3] Torubarov N.N., Serov M.V., Malyshev R.M., Torubarov S.N. Design of actuator of the drives of nonstationary mixers. Chemical and Petroleum Engineering, 2018, vol. 54, no.7–8, pp. 552–559.
[4] Smelyagin A.I., Prikhod'ko A.A. Nauka. Tekhnika. Tekhnologii (Politekhnicheskiy vestnik) ⸺ Science. Engineering. Technology (Polytechnical Bulletin), 2014, no. 4, pp. 79–86.
[5] Ganiev R.F., Reviznikov D.L., Sukharev T.Yu., Ukrainskiy L.E. Problemy mashinostroeniya i nadezhnosti mashin ⸺ Journal of machinery manufacture and reliability, 2019, no. 3, pp. 3–9.
[6] Senda S., Komoda Y., Hirata Y., Takeda H., Suzuki H., Hidema R. Fluid Deformation Induced by a Rotationally Reciprocating Impeller. Journal of Chemical Engineering of Japan, 2014, vol. 47, no. 2, pp. 151–158.
[7] Senda S., Yamagami N., Komoda Y., Hirata Y., Suzuki H., Hidema R. Power Characteristics of a Rotationally Reciprocating Impeller. Journal of Chemical Engineering of Japan, 2015, vol. 48, no. 11, pp. 885–890.
[8] Mudrov A.G. Vestnik Kazanskogo GAU ⸺ Vestnik of Kazan State Agrarian University, 2016, no. 2, pp. 77–82.
[9] Smelyagin A.I., Sachkov V.G., Chusovitin N.A. Ustroystvo dlya peremeshivaniya [Stirring device]. Patent RF no. 2113897, 1998.
[10] Torubarov N.N., Malyshev R.M., Serov M.V. Apparatus with intracyclic variation of the velocity of the anchor agitator. Chemical and Petroleum Engineering, 2016, vol. 52, no. 5–6, pp. 379–385.
[11] Torubarov N.N., Malyshev R.M., Kolebanov A.V., Frantsuzov A.I., Rusinov V.V., Uskov A.A. Mixers with nonstationary motion of the stirrers. Chemical and Petroleum Engineering, 2016, vol. 52, no. 5–6, pp. 327–331.
[12] Prikhod'ko A.A., Kopteva A.A. Izvestiya vysshikh uchebnykh zavedeniy. Pishchevaya tekhnologiya ⸺ News of institutes of higher education. Food Technology, 2019, no. 5–6, pp. 87–90.
[13] Salamandra K.B., Tyves L.I. Problemy mashinostroeniya i nadezhnosti mashin ⸺ Journal of machinery manufacture and reliability, 2017, no. 5, pp. 22–29.
[14] Briskin E.S., Kalinin Ya.V., Maloletov A.V. Izv. RAN. MTT — Proc. of the Russ. Acad. Sci. Mech. Rigid Body, 2017, no. 2, pp. 13–19.
[15] Levitskiy N.I. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. Moscow, Nauka Publ., 1979, 576 p.
[16] Briskin E.S., Prikhod'ko A.A., Smelyagin A.I. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta ⸺ Izvestiya VSTU, 2017, no. 14, pp. 11–18.
[17] Smelyagin A.I. Teoriya mekhanizmov i mashin [Theory of mechanisms and machines]. Moscow, Novosibirsk, Infra-M Publ., 2006, 262 p.
[18] Osipov A.V. Khimicheskoe i neftegazovoe mashinostroenie ⸺ Chemical and Petroleum Engineering, 1979, no. 7, pp. 8–9.
[19] Prikhod'ko A.A., Smelyagin A.I. Khimicheskoe i neftegazovoe mashinostroenie ⸺ Chemical and Petroleum Engineering, 2018, no. 3, pp. 9–12.
[20] Prikhod'ko A.A., Smelyagin A.I. Opredelenie momenta soprotivleniya sredy na rabochem organe vozvratno-vrashchatel'nogo peremeshivayushchego ustroystva [Investigation of power consumption in a mixing device with swinging movement of the actuating element]. Innovatsii v mashinostroenii: Sbornik trudov VII Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Innovations in Mechanical Engineering: Proceedings of the VII International Scientific and Practical Conference]. Kemerovo, KuzSTU Publ., 2015, pp. 516–519.
[21] Wójtowicz, R. Flow pattern and power consumption in a vibromixer. Chemical Engineering Science, 2017, vol. 172, pp. 622–635.


Приходько А.А., Коптева А.А. Моделирование динамики планетарного перемешивающего устройства с неравномерным вращательным движением рабочего органа. Математическое моделирование и численные методы. 2020. № 1. с. 88–102.


Исследование выполнено при финансовой поддержке РФФИ и
администрации Краснодарского края в рамках научного проекта
№ 19-41-233002


Download article

Количество скачиваний: 199