521.3:521.6 Statistical model of space objects distribution in space of orbital parameters

Borovin G. K. (Keldysh Institute of Applied Mathematics of the Russian Academy of Scienсes), Stepaniants V. A. (Keldysh Institute of Applied Mathematics of the Russian Academy of Scienсes), Zahvatkin M. V. (Keldysh Institute of Applied Mathematics of the Russian Academy of Scienсes), Usovik I. V. (JSC TsNIIMash)

SPACE OBJECT, ORBITAL PARAMETERS, MODEL OF SPACE DEBRIS DISTRIBUTION


doi: 10.18698/2309-3684-2019-4-6990


A statistical model of space debris is proposed. The model is based on the catalog of orbits of space objects, constructed using domestic and foreign sources. To build this model, the cataloged objects are clustering using criterion of closeness in a 4d space of orbital parameters characterizing the semimajor axis, eccentricity and position of the plane of the satellite orbits composing a cluster. The distribution of objects in each cluster is determined by the mathematical expectation and the covariance matrix of the spread of the orbital parameters of the cluster.


Kessler D.J. Collisional Cascading: The Limits of Population Growth in Low Earth Orbit. Advances in Space Research, 1991, vol.11., pp.2637–2646.
Nazarenko A.I. Modelirovanie kosmicheskogo musora [Space debris modeling]. Seri. Mekhanika, upravlenie i informatika [Ser. Mechanics, Control and Informatics]. Moscow, IKI RAN Publ., 2013, 216 p.
Classification of geosynchronous objects, ESA, 28 March, 2015, iss.17.
Stepanyants V.A., L'vov D.V.Matematicheskoe modelirovanie — Mathematical Models and Computer Simulations, 2008, vol.20, no 6, pp.79–85.
Duboshin G.N. Spravochnoe rukovodstvo po nebesnoj mekhanike i astrodinamike [Handbook of celestial mechanics and astrodynamics]. Moscow, Nauka Publ., 1976, 864 p.
Montenbruck O., Gill E. Satellite orbits: models, methods, applications. Springer-Verlag Berlin Heidelberg, 2000, 370 p.
Usovik I., Stepanov D., Stepanyants V., Zakhvatkin M., Molotov I., Nazarenko A. Improvement of the space debris model in MEO and GEO regions according to the catalog of the Keldysh Institute of Applied Mathematics (Russian academy of sciences). Proceedings 7th European Conference on Space Debris, 2017, 10 p.
Zalles R., Molotov I., Kokina T. and etc. First ISON observations for satellite conjunction analysis in the Western Hemisphere. Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias), 2018, vol.50, pp.36–37.
Molotov I.E., Voropaev V.A., Zahvatkin M.V., Stepan'yanc V.A. et al. Ekologicheskij vestnik nauchnyh centrov Chernomorskogo ekonomicheskogo sotrudnichestva — Ecological Bulletin of the scientific centers of the black sea economic cooperation, 2017, no.4, iss.3, pp.102–108.
Voropaev V., Molotov I., Zakhvatkin M., Khutorovsky Z., Streltsov A., Stepanyants V., Borovin G., Pavlova E. Recent developments of the KIAM Space Debris database for space situation awareness and conjunction analysis. Proceedigs of the 69th International Astronautical Congress, 2018, 7 p.
Molotov I., Zakhvatkin M., Elenin L., Canals Ros L., Graziani F., Teofilato P., Schildknecht T., Ehgamberdiev Sh., Aliev A., Ivashchenko Yu., Zalles R., Streltsov A., Krylov A., Erofeeva A., Chornaya E., Rusakov O., Stepanyants V., Agletdinov V., Borovin G., Pavlova E. ISON network tracking of space debris: current status and achievements. Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias), 2019, vol.51, pp.144–149.
Molotov I.E., Sun R.Yu., Zang Ch., Barres U. de Almejda, Zahvatkin M.V. et al. Rossijsko-kitajskie nablyudeniya fragmentov razrusheniya raketnoj stupeni «Centavr» — pervyj shag k seti observatorij BRIKS [Russian-Chinese observations of fragments of the destruction of the Centauri rocket stage — the first step to THE BRICS Observatory network]. Kosmicheskij musor: fundamental'nye i prakticheskie aspekty ugrozy [Space debris: fundamental and practical aspects of the threat], 2019, pp.95–102.
Pavlova E.A., Zahvatkin M.V., Strel'cov A.I., Elenin L.V., et al. Obespechenie bezopasnosti polyotov vysokoorbital'nyh kosmicheskih apparatov [Ensuring flight safety of high-orbit space vehicles]. Kosmicheskij musor: fundamental'nye i prakticheskie aspekty ugrozy [Space debris: fundamental and practical aspects of the threat], 2019, pp.131–138.
Mahalanobis P.C. On the generalised distance in statistics. Proceedings of the National Institute of Sciences of India, 1936, vol.2, pp.49–55.
Maesschalck R., Jouan-Rimbaud D., Massart D.L. The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems, 2000, vol.50, iss.1, pp.1–18.
Bazey A.A., Bazey N.V., Borovin G.K., Zolotov V.E., Kashuba V.I., Kashuba S.G., Kupriyanov V.V., Molotov I.E. Matematicheskoe modelirovanie i chislennye metody – Mathematical Modeling and Computational Methods, 2015, no.5 (1), pp.83–93.


Боровин Г.К., Захваткин М.В., Степаньянц В.А., Усовик И.В. Статистическая модель распределения космических объектов в пространстве орбитальных параметров. Математическое моделирование и численные методы, 2019, № 4, с. 69–90.



Download article

Количество скачиваний: 608