551.513 Сlimatic effects modeling of the large asteroid impact 66 million years ago

Parkhomenko V. P. (Bauman Moscow State Technical University/Computing Centre of RAS)


doi: 10.18698/2309-3684-2019-2-6883

Studies indicate the mass death on Earth of a significant number of biological groups, in particular - dinosaurs, at the end of the Cretaceous, 66 million years ago. The final cause of this phenomenon remains the subject of discussion. Currently, there are two main theories: large-scale volcanic eruptions and the impact of an asteroid that formed the Chicxulub crater (Mexico). The production of sulfur-containing gases from the evaporation of the surface layers of the Earth during collisions is now considered the main source of climatic effects, since they form stratospheric sulfate aerosols that block sunlight and thus cool the atmosphere of the Earth and prevent photosynthesis. This paper presents the use of a joint climate model to study the effects of this asteroid on the Earth’s climate. It was established that, depending on the time spent in the stratosphere of the aerosol, the global annual average temperature of the surface air decreased by 18 ° C–26 ° C, remained below zero for 4-30 years and a recovery time of more than 30 years was observed.

[1] Renne P.R., Deino A.L., Hilgen F.J., Kuiper K.F., Mark D.F., Mitchell W.S., Morgan L.E., Mundil R., Smit J. Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science, 2013, vol. 339, iss. 6120, pp. 684–687.
[2] Schoene B., Samperton K.M., Eddy M.P., Keller G., Adatte T., Bowring S.A., Khadri S.F.R., Gertsch B. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction, Science, 2015, vol. 347, iss. 6218, pp. 182–184.
[3] Kring, D.A. The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Paleogeogr. Paleoclimatol. Paleoecol., 2007, no. 255 (1-2), pp. 4–21.
[4] Feulner G. Climate-modelling of mass-extinction events: a review. Int. J. Astrobiol., 2009, no. 8, pp. 207–212.
[5] Alvarez L.W., Alvarez W., Asaro F., Michel H.V. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science, 1980, vol. 208, iss. 4448, pp.1095–1108.
[6] Covey C., Thompson S.L., Weissman P.R., MacCracken M.C. Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Globa Planet. Change, 1994, no. 9 (3-4), pp. 263–273.
[7] Pope K.O. Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology, 2002, no. 30 (2), pp. 99–102.
[8] Pierazzo E., Kring D.A., Melosh H.J. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases, J. Geophys. Res. 1998, vol. 103, iss. E12, pp. 28607–28625.
[9] Pierazzo E., Hahmann A.N., Sloan C. Chicxulub and climate: radiative perturbations of impact-produced S-bearing gases. Astrobiology, 2003, vol. 3, no. 1, pp. 99–118.
[10] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Computational Modeling of Conjugated Aerodynamic and Thermomechanical Processes in Composite Structures of High-speed Aircraft. Applied Mathematical Sciences, 2015, vol. 9,
no. 98, pp. 4873–4880. http://dx.doi.org/10.12988/ams.2015.55405
[11] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods,
no. 4(8), 2015, pp. 75–91.
[12] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Finite Difference Methods, Theory and Applications. Lecture Notes in Computer Science, 2015, vol. 9045, pp. 161–168. DOI 10.1007/978-3-319-20239-6_15
[13] Dimitrienko Y. I., Li S. Matematicheskoe modelirovanie i chislennye menody – Mathematical Modeling and Computational Methods, 2018, no. 2, pp. 70–95.
[14] Parkhomenko V.P. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 1, pp. 94–108.
[15] Parkhomenko V.P. Informatika i ee primeneniya – Informatics and Applications, 2017, vol. 11, no. 2, pp. 65–74.
[16] Sewall J.O., van de Wal R.S.W., van der Zwan K., van Oosterhout C., Dijkstra H.A., Scotese C.R. Climate model boundary conditions for four Cretaceous time. Clim. Past, 2007, vol. 3, no. 4, pp. 647–657.
[17] Royer D.L. CO2-forced climate thresholds during the Phanerozoic, Geochim. Cosmochim. Ac., 2006, vol. 70, no. 23, pp. 5665–5675.
[18] Hong S.K., Lee Y.I. Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth Planet. Sci. Lett., 2012, vol. 327, pp. 23–28.
[19] Brugger J., Feulner G., Petri S. Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters, vol. 44, iss. 1, pp. 419–427.
[20] Pope K.O., Baines K.H., Ocampo A.C., Ivanov B.A. Energy, voltile production,and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J. Geophys. Res., 1997, vol. 102, iss. E9, pp. 21645–21664.
[21] Vellekoop J., Sluijs A., Smit J., Schouten S., Weijers J.W.H. Sinninghe Damst J.S, Brinkhuis H. Rapid short-term cooling following the Chicxulub impact at the CretaceousPaleogene boundary. Proc. Natl. Acad. Sci. USA, 2014, vol. 111, iss. 21, pp. 7537–7541.
[22] Renne P.R., Sprain C.J., Richards M.A., Self S., Vanderkluysen L., Pande K. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 2015, vol. 350, iss. 6256, pp. 76–78.

Пархоменко В.П. Моделирование климатических последствий падения крупного астероида 66 млн лет назад. Математическое моделирование и численные методы, 2019, № 2, с. 68–83.

This work was supported by the RFBR Project No. 17-01-00693.

Download article

Количество скачиваний: 67