Рубрика: "1.1.8. Механика деформируемого твердого тела (физико-математические науки)"



539.3 Асимптотическая теория тонких многослойных микрополярных упругих пластин

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Бойко С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-2-3366


Рассматривается задача о построении теории расчета напряженно-деформированного состояния тонких многослойных упругих пластин в моментной (микрополярной) теории упругости. Решение данной задачи строится с помощью асимптотического анализа общих уравнений 3-х мерной квазистатической задачи моментной теории упругости. Асимптотический анализ проводится по малому геометрическому параметру, равному отношению толщины пластины к ее характерной длине. Получены рекуррентные формулировки локальных задач моментной теории упругости. Для этих задач получены явные аналитические решения. Представлен вывод осредненной системы уравнений равновесия многослойных пластин. Показано, что асимптотическая теория позволяет получить явное аналитическое выражение для всех 9 (в общем случае) компонент тензоров напряжений и моментных напряжений в пластине. Как частный случай рассмотрена задача о расчете напряженно-деформированного состояния центрально-симметричной шарнирно опертой пластины при изгибе под действием равномерно распределенного давления. Получено полное аналитическое решение этой задачи для всех ненулевых компонент тензоров напряжений и моментных напряжений. Проведен численный анализ решения задачи для тензора напряжений в случае однослойной пластины на основе полученных выражений. Проведен сравнительный анализ полученных результатов с аналогичными расчетами для классической теории, выявлены сходства и различия для всех компонент тензора напряжений.


Димитриенко Ю.И., Бойко С.В. Асимптотическая теория многослойных тонких микрополярных упругих пластин. Математическое моделирование и численные методы, 2023, № 2, с. 33–66.



539.36 Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Димитриенко А. Ю. (МГУ им. М.В. Ломоносова), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-1-1541


В рамках деформационной теории пластичности при активном нагружении предложена модель определяющих соотношений упруго-пластических композитов, относящихся к классу трансверсально-изотропных материалов. Для построения нелинейных определяющих соотношений использована теория спектральных разложениях тензоров напряжений и деформаций, спектральное представление нелинейных тензорных функций для трансверсально-изотропных сред. Предложены конкретные модели функций пластичности, зависящие от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Задачи на ячейке периодичности формулируются с помощью метода асимптотического осреднения периодических сред. Численное решение задач на ячейке периодичности осуществляется с помощью конечно-элементного метода в рамках программного обеспечения, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. приведен пример численного расчета констант модели композита с помощью предложенного метода для однонаправленно-армированного композита на основе углеродных волокон и матрицы из алюминиевого сплава. Приведены примеры верификация предложенной модели для различных траекторий нагружения композита в 6 мерном пространстве напряжений. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования трансверсально-изотропных композитов.


Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.



539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 2

Головина Н. Я. (Тюменский индустриальный университет), Белов П. А. (Институт прикладной механики РАН)


doi: 10.18698/2309-3684-2022-2-1427


В статье представлено продолжение обзора работ, посвященных исследованиям свойств упругопластических материалов. В первой части были рассмотрены универсальные законы деформирования, содержащие менее четырех формальных параметров. В результате обзора были сформулированы требования к формулировке эмпирических законов деформирования упругопластических материалов. В том числе, был сделан вывод о том, что закон деформирования должен быть, как минимум четырех-параметрическим. Во второй части данной статьи рассмотрены и проанализированы эмпирические законы деформирования, содержащие четыре и более параметров. Сравнение рассмотренных эмпирических кривых с выборкой экспериментальных точек осуществляется стандартной процедурой минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. Для оценки предсказательной силы моделей на соответствие эксперименту, использована представительная выборка из 158 экспериментальных точек кривой деформирования российского титанового сплава ВТ6. Универсальные эмпирические законы деформирования, содержащие четыре формальных параметра, позволяют описать кривую деформирования с заданными на концах кривой напряжением и касательным модулем. Этот факт позволяет утверждать, что упругопластические свойства материалов могут быть выражены через геометрические параметры кривой деформирования. В свою очередь связь между упругопластическими свойствами материала и геометрией кривой деформирования, можно трактовать, как принцип «геометризации» упругопластических свойств материалов.


Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 2. Математическое моделирование и численные методы, 2022, № 2, с. 16–29



539.3 Моделирование изгиба балок из резиноподобных материалов

Фирсанов В. В. (ФГБУ ВО "Московский авиационный институт")


doi: 10.18698/2309-3684-2021-4-316


Поскольку классические гипотезы Бернулли для балок и Кирхгофа для тонких пластин вступают в противоречие с дополнительным для резиноподобных (несжимаемых) материалов условием несжимаемости (неизменяемости объёма в процессе деформирования), предлагается модель расчёта для изгибаемой балки, не приводящая к серьёзному усложнению поставленной задачи по сравнению с классическим решением. Неизменяемость объёма проявляется при действии силовой нагрузки, в случае температурной нагрузки деформация изменения объёма не равна нулю. Отсутствие объёмных деформаций для резиноподобных материалов есть следствие закона Гука для подобного рода материалов. Суммируя линейные деформации, выраженные через напряжения и принимая коэффициент Пуассона 0,5, получим равенство нулю указанной суммы Многие резиноподобные материалы являются несжимаемыми и низкомодульными, что означает слабое их сопротивление растяжению и сдвигу, но сопротивление материала изменению объёма стремится к бесконечности, поэтому физические соотношения обобщённого закона Гука преобразуются в так называемые «неогуковские» уравнения связи напряжений и деформаций. Из двух независимых физических характеристик (модулей) для несжимаемых материалов остаётся лишь один модуль, характеризующий сопротивление среды изменению формы. В физических соотношениях для несжимаемого материала произведение бесконечно большого объёмного модуля на деформацию изменения объема, равную нулю, представляет собой неопределенность, которая заменяется некоторой силовой функцией, имеющей размерность напряжений и являющейся дополнительной неизвестной. В то же время, система определяющих уравнений механики несжимаемых сред дополняется уравнением неизменяемости объёма. Схема решения задачи в перемещениях для традиционных конструкционных материалов превращается в смешанную схему для резиноподобных материалов, поскольку для них в качестве основных искомых неизвестных выступают не только перемещения, но и упомянутая силовая.


Фирсанов В.В. Моделирование изгиба балок из резиноподобных материалов. Математическое моделирование и численные методы, 2021, № 4, с. 3–16.



539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 3

Головина Н. Я. (Тюменский индустриальный университет)


doi: 10.18698/2309-3684-2023-1-331


Статья является третьей частью обзора работ, посвященных исследованиям свойств упругопластических материалов. Первая и вторая часть были посвящены анализу универсальных эмпирических законов деформирования, моделирующих свойства материала на всем диапазоне деформирования, вплоть до разрушения. Был сделан вывод о том, что для создания модели отклика материала на рост напряжений, закон деформирования должен быть, как минимум четырех-параметрическим. Эмпирический закон Рамберга-Осгуда был признан наиболее качественным, по крайней мере для рассмотренного титанового сплава ВТ6. Тем не менее, несмотря на его точность, он не отражает свойств материала в зоне больших пластических деформаций, в том числе в окрестности точки предела прочности. В данной статье представлен анализ многозвенных моделей, описывающих связь между деформацией и напряжением, различными законами в зоне упругих и в зоне пластических деформаций. В обзор вошли: двузвенные модели Надаи (Nadai), Мирамбелл-Реал (Mirambell, Real), Расмуссена (Rasmussen), Абделла (Abdella), сформулированные для материалов, кривая деформирования, которых не имеет участка с положительной кривизной. Также в обзоре рассмотрены трехзвенные модели Куача (Quach); Хертеле (Hertele); Белова-Головиной, которые позволяют моделировать кривые деформирования с участком положительной кривизны. Оценка качества эмпирических законов и соответствие их выборке экспериментальных точек осуществлена методом минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. В качестве материала для сравнительного анализа эмпирических моделей выбран титановый сплав ВТ6, для моделей Хертеле и Белова-Головиной — сталь Ст3сп. Показано, что модели, построенные на основе многозвенных сплайнов, боле точно определяют свойства упругопластических материалов, чем модели, построенные на основе универсальных законов.


Головина Н.Я. Анализ эмпирических моделей кривых деформирования упруго-пластических материалов (обзор). Часть 3. Математическое моделирование и численные методы, 2023, No 1, с. 3–31.



<< 2