Рубрика: "05.07.00 Авиационная и ракетная техника"
doi: 10.18698/2309-3684-2016-2-3954
Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.
Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию. Математическое моделирование и численные методы, 2016, №2 (10), c. 39-54
doi: 10.18698/2309-3684-2015-1-3149
Представлены исследования по динамике движения и переноса энергии при сверхзвуковом течении в донной области. Показано, что течение в донной области существенно зависит от структуры пограничного слоя на участке между задней кромкой и точкой прилипания на осевой линии, в которой сходится пограничный слой, оторвавшийся от задней кромки. Включены исследование влияния массоподвода газа в донную область с поверхности тела и дна и теплообмена в донной области. Получено решение задачи о ближнем следе за осесимметричным телом без учета рециркуляции на ограниченном расстоянии от кормовой части.
Сидняев Н. И., Гордеева Н. М. Исследование влияния энергомассообмена на течение в «следе» сверхзвуковых моделей конических тел. Математическое моделирование и численные методы, 2015, №1 (5), c. 31-49
doi: 10.18698/2309-3684-2015-3-5867
Рассмотрена задача определения давления на поверхности тел, обтекаемых потоком газа с малой сверхзвуковой скоростью (M< 1,5). Разработан экономичный алгоритм для расчета давления на участке поверхности затупленных тел вращения. Приведены примеры расчетов обтекания сферы и эллипсоидов с разными отношениями полуосей. Сравнение с точными численными расчетами показывает эффективность предложенного подхода.
Котенев В. П., Сысенко В. А. Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями. Математическое моделирование и численные методы, 2015, №3 (7), c. 58-67
doi: 10.18698/2309-3684-2014-4-8894
Приведены результаты оценки точности для инженерной методики расчета массового расхода газа через ламинарный пограничный слой на полусфере из работы [1]. Предложена аналогичная инженерная методика повышенной точности.
Горский В. В., Сысенко В. А. Моделирование расхода газа через ламинарный пограничный слой на поверхности полусферы в сверхзвуковом воздушном потоке. Математическое моделирование и численные методы, 2014, №4 (4), c. 88-94
doi: 10.18698/2309-3684-2014-1-6881
Разработаны аналитические формулы для быстрого и точного расчета давления на участке поверхности тел вращения произвольного очертания, обтекаемых сверхзвуковым потоком газа. Рассмотрены примеры применения метода для пространственных течений газа.
Котенев В. П., Сысенко В. А. Аналитические формулы повышенной точности для расчета распределения давления на поверхности выпуклых затупленных тел вращения произвольного очертания. Математическое моделирование и численные методы, 2014, №1 (1), c. 68-81
doi: 10.18698/2309-3684-2015-1-8393
Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.
Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93
doi: 10.18698/2309-3684-2014-2-77100
Рассмотрены внутренние (колебания топлива в баках) и внешние (определение присоединенных масс и моментов инерции) задачи нестационарного взаимодействия корпуса ЛА и идеальной несжимаемой жидкости и их формулировки в виде граничных интегральных уравнений. Приведены формулы эффективного решения указанных задач методом граничных элементов применительно к телам вращения и примеры расчетов.
Плюснин А. В. Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов. Математическое моделирование и численные методы, 2014, №2 (2), c. 77-100