539.376 Simulation of the bearing capacity of a cylindrical shell reinforced by a power set under conditions of material creep

Dubrovin V. M. (Bauman Moscow State Technical University), Semyonov K. S. (Bauman Moscow State Technical University/RSC Energia)

LOAD CAPACITY, CURRENT LOAD, INTERNAL PRESSURE, CYLINDRICAL SHELL, CREEP, DEFORMATION, STABILITY, STRINGER, FRAME


doi: 10.18698/2309-3684-2018-2-3246


Cylindrical shell, which is under the influence of considerable loads for a long time, can lose the ability to withstand the level of these loads, as its carrying capacity decreases. This is due to the fact that the shell material is subject to the creep phenomenon. As studies [1-3] show, creep is noticeably manifested even at normal temperature and stresses, much lower than the yield point of the shell material. Experimental and theoretical work on the stability of shells show [4-5] that the main reason for reducing the critical load for real shells in comparison with ideal shells is the initial design imperfections. Therefore, it is to be expected that additional deflections that arise as a result of creep deformation have a significant effect on the critical load (bearing capacity) of the shell. A method is proposed for calculating the load-bearing capacity of a cylindrical shell reinforced by a longitudinal (stringers) and a final (frame) power set under the action of axial and transverse loads, as well as internal excess pressure. As an example, a shell is considered, the material of which is an aluminum-magnesium alloy AMg6-M and AMg6-H. The dependence of the bearing capacity on the operating time is obtained.


[1] Rzhanitsyn A.R. Teoriya polzuchesti [Theory of creep]. Moscow, Stroyizdat, 1968, 419 p.
[2] Kachanov L.M. Teoriya polzuchesti [Theory of creep]. Moscow, Fizmatlit, 1960, 455 p.
[3] Dimitrienko Y.I. Nelineinaya mehanika sploshnoi sredy [Nonlinear continuum mechanics]. Moscow, PHYSMATH, 2009, 629 p.
[4] Alexander L.N., Afanasyev A.P., Lisov A.A. Sovremennye metidy obespecheniya bezotkaznosti slozhnyh tehnicheskikh sistem [Modern methods of ensuring reliability of complex technical systems]. Moscow, Logos, 2001, 208 p.
[5] Shirvel P.I., Chigarev A.V. Prochnost neravnomerno nagretyh cilindricheskih tel v usloviyah polzuchesti i radialnogo bieniya [Durability unevenly heated cylindrical body in a radial creep and irradiation]. Minsk, Belarusian National Technical University, 2014, 251 p.
[6] Dubrovin V.M., Butina T.A. Inzhenernyy journal: nauka i innivatsii – Engineering Journal: Science and Innovation, vol. 9 (21), 2013.
[7] Kharlab V.D. Printsipialnye voprosy lineynoy teorii polzuchesti [Fundamental questions of the linear creep theory]. St. Petersburg, SPSUACE publ., 2014, 207 p.
[8] Pachurin G.V. Shevchenko S.M., Dubinsky V.N., Vlasov O.V. Micromekhanizmy vysokotemperaturnoy ustalosti i polzuchesti metallov i splavov [Micromechanisms high temperature fatigue and creep of metals and alloys]. Nizhniy Novgorod, Novosibirsk State Technical University, 2006. 131 p.
[9] Moskvichev V.V. lekcii po mekhanike razrusheniya [Lectures on fracture mechanics]. Siberian Federal University, 2007, 90 p.
[10] Kostyuk A.G. Plastichnost I razrushenie kristallicheskogo materiala pri slozhnom nagruzhenii [Plasticity and the destruction of the crystalline material under complex loading]. Moscow. MEI publ., 2000. 173 p.
[11] Solomonov J.S.,Georgievskii V.P., Nedbay A.Y., Andryushin V.A. Metody rascheta cilindricheskikh obolochek iz kompozitnkh materialov [Methods for calculating the cylindrical shells made of composite materials]. Moscow, FIZMATLIT Publ,, 2009, 264 p.
[12] Sukhinin S.N. Prikladnye zadachi ustoichivosti mnogosloinyh obolochek iz kompozicionnykh materialov [Applications stability of multilayered composite shells].Moscow. FIZMATLIT Publ., 2010, 241 p.
[13] Frolov K.V. Izbrannye Trudy. T.2 Mashinivedinie i mashinostroenie [ Selected works. V.2. Engineering and mechanical engineering].Moscow, Science Publ., 2007, 526 p.
[14] Algazin O.D., Butina. T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana. Spec. vypusk. Mathematicheskoe modelirovanie – Herald of the Bauman Moscow State Technical University. Sp. Mathematical Modeling, 2011,3 s.
[15] Zhilin P.A. Aktualnye problem mehaniki [Problems in Mechanics]. St. Petersburg, Institute of Problems of Mechanical Engineering, 2006, 306 p.
[16] Sadykhov G.S., Kuznetsov V.I. Problemy mashinostroeniya I nadezhnosti mashin – Journal of Machinery Manufacture and Reliability, 2005, no. 4, pp. 96-99.
[17] Sadykhov G.S. Problemy mashinostroeniya I nadezhnosti mashin – Journal of Machinery Manufacture and Reliability, 2005, no. 1, pp. 119-122.
[18] Sadykhov G.S., Kuznetsov V.I. Metody I modeli otsenok bezopasnosti sverkhnaznachennykh srokov ekspluatatsii tekhnicheskhih ob’ektov [Methods and models of security assessments sverhnaznachennyh terms of operation of the technical facilities]. Moscow, LKI Publ., 2007, 144 p.


Дубровин В.М., Семенов К.С. Моделирование несущей способности подкрепленной силовым набором цилиндрической оболочки в условиях ползучести материала. Математическое моделирование и численные методы, 2018, № 2, с. 32–46.



Download article

Колличество скачиваний: 32