Kyrill Sergeyevich Semyonov (Bauman Moscow State Technical University/RSC Energia) :


Articles:

539.376 Modeling of load-bearing capacity of a smooth cylindrical shell under conditions of material creep

Dubrovin V. M. (Bauman Moscow State Technical University), Semyonov K. S. (Bauman Moscow State Technical University/RSC Energia)


doi: 10.18698/2309-3684-2017-3-3848


The study introduces a method for calculating the load-bearing capacity of a smooth cylindrical shell, which has been under the action of axial and transverse loads for a long time. We assume that with prolonged loading, the shell material is subject to the phenomenon of creep, which in turn affects the load-bearing capacity of the shell. As a result, we obtained relations that made it possible to estimate this influence.


Dubrovin V.M., Semenov K.S. Modeling of load-bearing capacity of a smooth cylindrical shell under conditions of material creep .Маthematical Modeling and Computational Methods, 2017, №3 (15), pp. 38-48



519.6 Modelling of quasi-static reliability of technical system design

Dubrovin V. M. (Bauman Moscow State Technical University), Semyonov K. S. (Bauman Moscow State Technical University/RSC Energia)


doi: 10.18698/2309-3684-2018-3-3848


We consider the technical system, comprising a plurality of structural elements operating under the influence of a complex external loads. For such a system, we proposed a method for calculating the reliability criterion for the occurrence of one or more of the limit states design elements.


Дубровин В.М., Семёнов К.С. Моделирование квазистатической надежности конструкции технической системы. Математическое моделирование и численные методы, 2018, № 3, с. 38–48.



539.376 Simulation of the bearing capacity of a cylindrical shell reinforced by a power set under conditions of material creep

Dubrovin V. M. (Bauman Moscow State Technical University), Semyonov K. S. (Bauman Moscow State Technical University/RSC Energia)


doi: 10.18698/2309-3684-2018-2-3246


Cylindrical shell, which is under the influence of considerable loads for a long time, can lose the ability to withstand the level of these loads, as its carrying capacity decreases. This is due to the fact that the shell material is subject to the creep phenomenon. As studies [1-3] show, creep is noticeably manifested even at normal temperature and stresses, much lower than the yield point of the shell material. Experimental and theoretical work on the stability of shells show [4-5] that the main reason for reducing the critical load for real shells in comparison with ideal shells is the initial design imperfections. Therefore, it is to be expected that additional deflections that arise as a result of creep deformation have a significant effect on the critical load (bearing capacity) of the shell. A method is proposed for calculating the load-bearing capacity of a cylindrical shell reinforced by a longitudinal (stringers) and a final (frame) power set under the action of axial and transverse loads, as well as internal excess pressure. As an example, a shell is considered, the material of which is an aluminum-magnesium alloy AMg6-M and AMg6-H. The dependence of the bearing capacity on the operating time is obtained.


Дубровин В.М., Семенов К.С. Моделирование несущей способности подкрепленной силовым набором цилиндрической оболочки в условиях ползучести материала. Математическое моделирование и численные методы, 2018, № 2, с. 32–46.