533.6.011.5 The restoration of the pressure distribution in the perturbed region near the sphere in supersonic gas flow with an arbitrary effective adiabatic index

Kotenev V. P. (Bauman Moscow State Technical University), Puchkov A. S. (Bauman Moscow State Technical University), Sapozhnikov D. A. (МГТУ им.Н.Э.Баумана), Tonkih E. G. (МГТУ им.Н.Э.Баумана)

SUPERSONIC FLOW, SHEPARD’S METHOD, HIGH TEMPERATURE GAS.


doi: 10.18698/2309-3684-2018-2-109121


The generalization of the dependency which was proposed earlier for determining of the pressure in perturbed area streamlined by the supersonic flow of the inviscid perfect gas was provided. The modification allows to consider effects which occur when the sphere is streamlined by high temperature gas with adiabatic index which do not equal 1.4. According to article [2-3], made adjustment to the function which describes the behavior of the shock wave which depends on the adiabatic index. The Shepard function’s coefficient also consider of adiabatic index. First and second order members of Shepard function which describe a pressure in area does not change. Comparison of application versions with the available data calculations for the high temperature gas and approximations based on perfect gas shows high accuracy of the proposed approach.


[1] Tirskij G. A., Saharov V. I., Kovalev V. L., Vlasov V. I., Gorshkov A. B., Kovalev R. V., Borovoj V. YA., Egorov I. V., Beloshickij A. V., Gorskij V. V., Brykina I. G., Afonina N. E., Gromov V. G., Kiryutin B. A., Lunev V. V., Skuratov A. S.,Aleksin V. A., Rogov B. V., Dyad'kin A. A., ZHurin S. V. Giperzvukovaya aehrodinamika i teplomassoobmen spuskemyh kosmicheskih apparatov i planetnyh zondov [Hypersonic aerodynamics and heat and mass transfer of descent spacecraft and planetary probes]. Moscow, Fizmatlit Publ.. 2011. 548 p.
[2] Zemlyanskij B.A., Lunev V.V., Vlasov V.I., Gorshkov A.B., Zalogin G.N., Kovalev R.V., Marinin V.P., Murzikov I.N. Konvektivnyj teploobmen letatel'nyh apparatov [Convective heat transfer of aircraft].Red. by Zemlyanskij B. A. Moscow, Fizmatlit Publ,. 2011. 548 p.
[3] Raymond G. Ziehm and John R., Mellin A. Venus Planetology Mission Based on the Planetary Explorer Spacecraft. AIAA Journal spacecraft and rockets. Vol.9, No. 4, 1972, pp. 280 – 283.
[4] Walter L. Heard J.R., Melvin S., Anderson, James Kent Anderson, and Michael F. Card. Design, Analysis, and Tests of a Structural Prototype Viking Aeroshell. AIAA Journal spacecraft and rockets. Vol. 10, No. 1, 1973, pp. 56 – 65.
[5] Cassanto J. M. A Base Pressure Experiment for Determining the Atmospheric Pressure Profile of Planets. AIAA Journal spacecraft and rockets. Vol. 10, No. 4, April 1973, pp. 253 – 261.
[6] Kotenev V.P., Puchkov A.S., Sapozhnokov D.A., Tonkokh E.G. Matematicheskoe modelirovanie i chislennye metody – Mathematical Modeling and Computational Methods. 2017, №4. С. 60 – 72.
[7] Lunev V.V. Techenie realnykh gazov s bolshimi skorostyami [Real Gases Transfer at High Speeds]. Moscow, Fizmatlit Publ., 2007, 760 p.
[8] Bazhin A.P., Blagosklonov V.I., Minailos A.N., Pirogov S.V. Uchenye zapiski TSAGI – Scientific notes of TSAGI. 1971. V. 2, №3. P. 95 – 100.
[9] Shapiro E.G. Nauchnye Trudy. Aerodinamika bolshikh skorostei – Proceedings. Aerodynamics of high speeds, 1972. №19.
[10] Maslyukov A.V. Vestnik TvGU. Seriya: Prikladnaya matematika – Herald Of Tver State University. Series: Applied mathematics. 2007. № 4. P. 99 – 112.
[11] Shepard D. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference, 1968, pp. 517-524.
[12] Kotenev V.P. Matematicheskoe modelirovanie – Mathematical Modeling, 2014. V. 26. no. 9. pp. 141-148.
[13] Kotenev V.P., Sysenko V.A. Matematicheskoe modelirovanie i chislennye metody – Mathematical Modeling and Computational Methods, 2015. no. 3. pp. 58 – 67.
[14] Draper N.R., Smith H. Applied regression analysis (Wiley series in probability and statistics). Wiley-Interscience Publ., 1998, 736 p. [In Russ.: Draper N., Smith H. Prikladnoy regressionnyy analiz. Moscow, Dialektika Publ., 2007, 912 p.].
[15] Ferster E., Renc B. Methoden der Korrelation – und Regressiolynsanalyse. [In Russ.: Ferster E., Renc B. Metody korreliatsionnogo i regressionnogo analiza [The methods of correlation and regression analysis]. Moscow, Finansy i statistika Publ., 1981, 302 p.].
[16] Vapnik V.N. Vosstanovlenie zavisimostey po empiricheskim dannym [Restoring dependencies using the empirical data]. Moscow, Nauka Publ., 1979, 448 p.
[17] Abramovich G.N. Prikladnaya gazovaya dinamika [Applied Gas Dynamics]. Moscow, Nauka Publ., 1991.
[18] Kotenev V.P., Bulgakov V.N., Ozhgibisova Yu.S. Matematicheskoe modelirovanie i chislennye metody – Mathematical Modeling and Computational Methods, 2016, no. 3. pp. 33-52.
[19] Lyubimov A.N., Rusanov V.V. Techeniya gaza okolo tupykh tel. V 2 t. T. 2. [Gas flow near the stub bodies. In 2 vols. Vol. 2]. Moscow, Nauka Publ., 1970, pp. 30–49.
[20] Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A. Metod lentochnykh adaptivnykh setok dlya chislennogo modelirovaniya v gazovoy dinamike [The method of belt adaptive grids for computational modelling in gas dynamics]. Moscow, FIZMATLIT Publ., 2011, 280 p.
[21] Kotenev V.P., Ratslav R.A., Sapozhnikov D.A., Chernyshev I.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2017, no. 3, pp. 83–104.
[22] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods. 2015, № 8, P. 75–91.
[23] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Stroganov A.S. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 3, pp. 3–24.
[24] Dimitrienko Y., Koryakov M., Zakharov A. Application of finite difference TVD methods in hypersonic aerodynamics. Finite Difference Methods, Theory and Applications, 2014, pp. 161–168.


Котенев В.П., Пучков А.С., Сапожников Д.А., Тонких Е.Г. Восстановление распределения давления в возмущенной области около сферы, обтекаемой сверхзвуковым потоком газа с произвольным эффективным показателем адиабаты. Математическое моделирование и численные методы, 2018, № 2, с. 109–121



Download article

Колличество скачиваний: 51