519.6 Решение прямой и обратной задачи восстановления электрофизических параметров по результатам зондирования переменным током

Краснов И.К.(МГТУ им.Н.Э.Баумана), Зубарев К.М.(МГТУ им. Н.Э.Баумана), Иванова Т.Л.(МГТУ им. Н.Э.Баумана)

ГЕОРАЗВЕДКА, МАГНИТОТЕЛЛУРИЧЕСКОЕ ЗОНДИРОВАНИЕ, КАЖУЩЕЕСЯ СОПРОТИВЛЕНИЕ, МОДЕЛЬ ГОРИЗОНТАЛЬНО-СЛОИСТОЙ СРЕДЫ, УДЕЛЬНОЕ ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ, НЕЛИНЕЙНАЯ ОБРАТНАЯ ЗАДАЧА


doi: 10.18698/2309-3684-2018-1-4154


По результатам измерения электромагнитных полей решена задача восстановления электрофизических параметров слоистых сред, являющаяся обратной задачей математической физики. Сформулированы различные методы оптимизации для ее решения. Предложена математическая модель горизонтально-слоистой среды с заданными параметрами, согласующимися с реальными значениями. Для решения прямой задач разработан алгоритм, позволяющий найти аналитическое решение при различных значениях параметров среды. Для решения обратных задач использованы методы полного перебора и Хука — Дживса, а также разработанный модифицированный метод полного перебора. По результатам решения прямой задачи выявлены характерные особенности среды при различных значениях электрофизических параметров. При решении обратной задачи с помощью различных методов оптимизации описаны особенности каждого из алгоритмов.


[1] Альпин Л.М., Даев Д.С., Каринский А.Д. Теория полей, применяемых в разведочной геофизике. Москва, Недра, 1985, 407 с.
[2] Андреева Е.В., Бердичевский М.Н., Голубцова Н.С., Колдаев Д.С., Яковлев А.Г. Контролируемая трансформация кривых МТЗ. Известия АН СССР. Физика Земли, 1991, № 10, с. 89–95.
[3] Аузин А.К. Электроразведка. Спецкурс по индуктивным и радиоволновым методам рудной электроразведки. Москва, Недра, 1977, 134 с.
[4] Бердичевский М.Н. Электрическая разведка методом магнитотеллурического профилирования. Москва, Недра, 1968, 254 с.
[5] Бердичевский М.Н. Электрическая разведка методом теллурических токов. Москва, Гостоптехиздат, 1960, 239 с.
[6] Бердичевский М.Н., Дмитриев В.И. Магнитотеллурическое зондирование горизонтально-однородных сред. Москва, Недра, 1992, 352 с.
[7] Зубарев К.М., Иванова Т.Л. Прямая и обратная задачи магнитотеллурического зондирования. Политехнический молодежный журнал, 2016, № 3 (3). DOI: 10.18698/2541-8009-2016-3-26
[8] Дмитриев В.И. Прямая и обратная задачи магнитотеллурического зондирования слоистой среды. Известия АН СССР. Физика Земли, 1970, № 1, с. 64–69.
[9] Жданов М.С. Электроразведка. Москва, Недра, 1986, 316 с.
[10] Жданов М.С., Варенцов И.М., Голубев Н.Г., Крылов В.А. Методы моделирования электромагнитных полей. Мат. Междунар. проекта COMEMI. Москва, Наука, 1990, 198 с.
[11] Краев А.П. Основы геоэлектрики. Ленинград, Недра, 1965, 587 с.
[12] Матвеев Б.К. Электроразведка. Москва, Недра, 1990, 368 с.
[13] Никитин А.А. Теоретические основы обработки геофизической информации. Москва, Недра, 1986, 342 с.
[14] Хмелевский В.К. Основной курс электроразведки. В 3 ч. Москва, Изд-во МГУ, 1970–1975. Ч. 1. — 324 с.; Ч. 2. — 383 с.; Ч. 3. — 402 с.
[15] Шейнманн С.М. Современные физические основы теории электроразведки. Ленинград, Недра, 1969, 224 с.
[16] Якубовский Ю.В., Ляхов Л.Л. Электроразведка. Москва, Недра, 1980, 365 с.
[17] Гольцман Ф.М. Проблемные вопросы информационно-статистической теории интерпретации геофизических наблюдений. Известия АН СССР. Физика Земли, 1977, № 12, с. 75–86.
[18] Гольцман Ф.М. Статистические модели интерпретации. Москва, Наука, 1971, 328 с.
[19] Грибов А.Ф., Жидков Е.Н., Краснов И.К. О численном решении обратной задачи теплопроводности. Инженерный журнал: наука и инновации, 2013, вып. 9. DOI: 10.18698/2308-6033-2013-9-964
[20] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 2. Универсальные законы механики и электродинамики сплошной среды, Москва, Изд-во МГТУ им. Н.Э. Баумана, 2011, 560 с.
[21] Димитриенко Ю.И., Краснов И.К., Реш Г.Ф., Акинкин Д., Кузнецов И. Разработка вычислительной технологии решения геометрически-обратных задач тепловой диагностики трехслойных сварных конструкций. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2012. Спец. выпуск № 3 «Математическое моделирование», с. 55–63.
[22] Димитриенко Ю.И., Губарева Е.А., Маркевич М.Н., Сборщиков С.В. Математическое моделирование диэлектрических свойств наноструктурированных композиционных материалов методом асимптотического осреднения. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2016, № 1, с. 76–89.
[23] Апельцин В.Ф., Мозжорина Т.Ю. Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения. Математическое моделирование и численные методы, 2014, № 2 (2), c. 3–27.


Краснов И.К., Зубарев К.М., Иванова Т.Л. Численное решение задачи восстановления электрофизических параметров по результатам зондирования переменным током. Математическое моделирование и численные методы, 2018, № 1, с. 41-54



Скачать статью

Колличество скачиваний: 14