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На основе теории непрерывных марковских процессов разработаны модели 
дуэльного боя двух единиц. Получены расчетные формулы для вычисления ос-
новных показателей боя. Установлено, что упреждающий удар одной из 
участвующих в бою единиц оказывает существенное влияние на исход боя 
близких по силам единиц и незначительное влияние, если одна из единиц имеет 
значительное превосходство. Показано, что использование модели с постоян-
ными эффективными скорострельностями может привести к существенным 
ошибкам при оценке его результатов. Установлено, что упреждающий удар 
в совокупности с более высокой степенью роста эффективной скорострель-
ности может в отдельных случаях компенсировать более чем двукратное 
начальное превосходство противника. Показана возможность использования 
аппроксимаций эффективных скорострельностей боевых единиц различными 
функциями времени боя. 
 
Ключевые слова: боевая единица, эффективная скорострельность, дуэль-
ный бой двух единиц, параметр соотношения сил, непрерывный марковский 
процесс. 

 
Введение. Для оценки работоспособности проектируемых техни-

ческих устройств необходимо построение математической модели их 
функционирования [1]. При разработке новых образцов вооружения 
и военной техники основой их военно-технической оценки являются 
результаты математического моделирования их боевого применения. 
В качестве такой оценки необходимо использовать модели двусто-
ронних боевых действий, поскольку они позволяют более полно оце-
нить степень приспособленности данного образца к решению кон-
кретных боевых задач, чем модель без учета ответного огня [2–4]. 
Двусторонний бой является стохастическим процессом, поэтому 
в качестве основы такой оценки целесообразно использовать вероят-
ностные модели двусторонних боевых действий, так как они позво-
ляют исследовать процесс протекания боя со значительно большей 
степенью точности и полноты, чем детерминированные модели (мо-
дели динамики средних) [5–7]. 

Одним из возможных способов построения вероятностной моде-
ли двусторонних боевых действий является применение теории не-
прерывных марковских процессов [8, 9]. Процесс, протекающий 
в системе, называется марковским, если в каждый момент времени 
вероятность любого состояния системы в будущем зависит только от 
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ее состояния в настоящий момент и не зависит от того, каким обра-
зом система пришла в это состояние [10]. 

Последовательность выстрелов, осуществляемых каждой участ-
вующей в бою единицей, представляют в виде пуассоновского потока 
событий [11]. Используется также прием, заключающийся в переходе 
от потока выстрелов к потоку успешных выстрелов [12]. Выстрел 
назовем успешным, если он поражает боевую единицу противника. 

Описание процесса протекания дуэльного боя. Рассмотрим ду-
эльный бой двух боевых единиц X и .Y  Введем следующие обозна-
чения: 

,x yp p  — вероятности поражения противника одним выстрелом 

боевой единицы X и Y  соответственно, 
,x y   — практические скорострельности боевых единиц X и ,Y  

соответственно. 
Величины ,   x x y yv p u p  назовем эффективными скоро-

стрельностями боевых единиц; 
 10F t  — вероятность того, что в момент времени t боевая едини-

ца Y  уничтожена, а боевая единица X не уничтожена (состояние 1:0); 
 01F t  — вероятность того, что в момент времени t боевая едини-

ца X  уничтожена, а боевая единица Y не уничтожена (состояние 0:1); 
 11F t  — вероятность того, что в момент времени t обе единицы  

X и Y  продолжают бой (состояние 1:1),  01F  ,  10F  ,  11F   — 

вероятности соответствующих состояний к концу боя. 
При одновременном открытии огня обеими боевыми единицами 

процесс протекания боя выразим через систему уравнений 
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                                    (1) 

с начальными условиями  

     01 10 110 0 0, 0 1F F F   .                             (2) 

Если в течение времени ct  боевая единица X ведет огонь, не ис-

пытывая противодействия противника (при ct t ), получим 
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с начальными условиями (2), а после открытия единицей Y ответного 
огня ( ct t ) процесс протекания боя выразим в системе уравнений (1) 

с начальными условиями 

     10 1 01 11 1, 0, 1 ,c c cF t F F t F t F                                (4) 

где 1F  — вероятность того, что боевая единица Y  будет уничтожена 

в течение времени .ct  

При упреждающем ударе единицы Y процесс протекания боя 
описать аналогично. 

Наиболее простые решения рассмотренные системы уравнений 
имеют при постоянных эффективных скорострельностях боевых еди-
ниц, т. е. при constv  и const.u   

При одновременном открытии огня единицами X и Y  [13] имеем
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а также 
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При упреждающем ударе единицы X  [14] до открытия единицей Y  
ответного огня ( ct t ) 
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                                         (5) 

и после открытия ответного огня единицей Y ( ct t ) 
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                     (6) 

а также 
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При упреждающем ударе единицы Y  формулы для вычисления 
вероятностей текущих и окончательных состояний получаются ана-
логично (5)–(6). 

Рассмотренная модель дуэльного боя имеет ряд достоинств, та-
ких как простота, наличие аналитических решений, возможность 
учета многих факторов (точности стрельбы, практической скоро-
стрельности, мощности боевой части, упреждающего удара одной 
из противоборствующих боевых единиц и т. д.). Однако эта модель 
имеет довольно существенный недостаток: эффективные скоро-
стрельности противоборствующих боевых единиц полагаются в те-
чение всего боя постоянными, что не всегда приемлемо при описании 
реальных боевых действий. При отражении атаки противника, а так-
же при наступлении на его позиции происходит сближение сторон, 
приводящее к уменьшению дальности стрельбы, что в свою очередь 
может привести к существенному увеличению эффективных скоро-
стрельностей как у наступающей, так и у обороняющейся стороны. 
Использование моделей боя с постоянными эффективными скоро-
стрельностями может в отдельных случаях привести к существенным 
ошибкам при вычислении его основных показателей. В настоящей 
статье сделана попытка устранить этот недостаток. 

Вероятностная модель дуэльного боя с экспоненциальными 
зависимостями эффективных скорострельностей боевых единиц 
от времени боя. Анализ различных боевых ситуаций, а также экспе-
риментальные данные показали, что в ряде случаев эффективные 
скорострельности боевых единиц сторон хорошо аппроксимируются  
экспоненциальными функциями времени боя, т. е.  
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,

.
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                                            (7) 

Система уравнений, описывающая процесс протекания боя, 
а также решение этой системы при упреждающем ударе единицы X
при 0xa  и 0ya   приведены в работе [15]. 

Если эффективная скорострельность единицы X  в течение боя 
практически не меняется, т. е. можно положить 0xa   (при этом 

0),ya   получим, что во время нанесения единицей X упреждающе-

го удара ( ct t ) процесс протекания боя можно описать системой 

уравнений 
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                                       (8) 

с начальными условиями (2) и после открытия единицей Y ответного 
огня 
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                             (9) 

с начальными условиями  

 10 1 ,x ck t
cF t e    01 0,cF t    11 .x ck t

cF t e              (10) 

Решение системы (9)–(10) имеет следующий вид: 
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                 (11) 
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Если 0,xa   0,ya   то во время отсутствия противодействия 

единицы Y  ( )ct t  получим: 
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                                    (12) 

с начальными условиями (2) и после открытия единицей Y  ответного 
огня ( )ct t  
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                            (13) 

с начальными условиями 
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Решение системы (13)–(14) имеет следующий вид: 
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Аналогично можно получить формулы для вычисления вероятно-
стей состояний при упреждающем ударе единицы .Y  При одновремен-
ном открытии огня обеими боевыми единицами в формулах (8)–(15), 
а также в работе [15] следует положить 0.ct   

Вероятностная модель дуэльного боя с линейными зависимо-
стями эффективных скорострельностей боевых единиц от време-
ни боя. В отдельных случаях эффективные скорострельности боевых 
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единиц хорошо аппроксимируются линейными функциями времени 
боя, т. е. 
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При этом во время нанесения единицей X упреждающего удара 
( )ct t  процесс протекания боя можно записать как систему уравнений: 
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с начальными условиями (2), а после открытия единицей Y  ответного 
огня 
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с начальными условиями 
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Наиболее простое решение система уравнений (18)–(19) имеет 
при x ya a a   и принимает тогда следующий вид:  

 
 

 
 

 
 

2 2 2

2 2 2

2 2

2 2 2
10

2 2 2
01

2
11

1 ,

,

     
          

         

     
          

         

 
    
 
 

  
 

 
 

    
 



c c
x c y c x y

c c
x c y c x y

c
y c x y

at at at
k t k t k k t

y x

x y x y

at at at
k t k t k k t

y

x y

at at
k t k k t

k k
F t e e

k k k k

k
F t e e

k k

F t e
2

,

 
 
 
 
















   (20) 
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а также  

 

 

 

2

2

2
10

2
01

11

1 ,

,

0.

 
  
 
 

 
  
 
 




   


   
  

c
x c

c
x c

at
k t

y

x y

at
k t

y

x y

k
F e

k k

k
F e

k k

F

                            (21) 

При 0, 0,x y x ya a a a    получим 

   
   

   
   

 
 

222

22

2

222

22

2

10

01

11

1 1 ,

1 , (22)

                 
     

    
        

   

 
    
 
 

     

   







x x y yy cx c x yy cx c

c

x x y yy c
x yy c

c

xy c
x yy c

k a k aa ta t k kk tk t t

x x
t

k a k aa t
k kk t t

y y
t

ka t
k k tk t

e k e a e d

k e a e d

e e

F t

F t

F t

  2

2
.

 
 
 
 

















x y ya k a t

 

Аналогично получают формулы для вычисления вероятностей 
состояний при упреждающем ударе стороны .Y  При одновременном 
открытии огня единицами X и Y в формулах (18)–(22) следует поло-
жить 0,ct   а при постоянной в течение боя эффективной скоро-

стрельности единицы X  (единицы )Y  в формулах (17)–(19) и (22) 

следует положить 0xa   ( 0).ya   

Анализ результатов расчетов. Начнем анализ результатов с фор-
мул [16–17]:  

,
x y

x y

k k

a a
 


 ,y

x y

a

a a
 


 .y

x

k

k
æ  

Параметр   характеризует степень роста интенсивности проте-
кания боя (чем меньше ,  тем быстрее растет интенсивность его 
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протекания). Как правило, в реальных боевых ситуациях 1.   Пара-
метр   характеризует превосходство скорости роста эффективной 
скорострельности боевой единицы Y  над скоростью роста эффектив-
ной скорострельности единицы X  ( 0   при 0ya   и 1   при 

0).xa   Параметр ,y

x

k

k
æ  характеризующий степень превосход-

ства единицы Y над единицей X  в начале боя, назовем параметром 
начального соотношения сил. Его граничным значением 0æ  назовем 

значение, соответствующее равенству сил, т. е. 0 0 0,5,x yp p   где 

0 0,x yp p  — вероятности победы единиц X  и Y  соответственно. 

Отметим, что при постоянных эффективных скорострельностях 
боевых единиц 0 1.æ  

Исследуем влияние параметров ,    и æ  на исход боя. Получе-

ны приближенные формулы для вычисления значения 0æ  при одно-

временном открытии огня обеими единицами: 

 
0,75

0,39 0,5

0 e

 

æ  

при экспоненциальных зависимостях эффективных скорострельно-
стей боевых единиц от времени боя (7) и 

 
0,64

0,32 0,5

0 e

 

æ  

при линейных зависимостях эффективных скорострельностей боевых 
единиц от времени боя (16). 

Как показали расчеты, изменение значения 0æ  несущественно 

при 
1,

0,4 0,6,

 
   

 а также при 
4,

0,1 0,9.

 
   

 

Исследуем влияние на исход боя упреждающего удара одной из 
боевых единиц. Значения  вероятности победы единицы X  при раз-
личных значениях æ  и приведенного времени ,ct  в течение которого 

единица X  ведет огонь по противнику, не испытывая ответного про-
тиводействия, при 1   и 2,   а также для 0   и 1   (т. е. тех 
значений   и ,  для которых влияние изменения эффективных ско-
рострельностей боевых единиц на исход боя наиболее существенно) 
приведены в табл. 1–4.  
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Таблица 1 

Вероятности победы единицы X  ( 1,   0)   

æ  c
t  

0 0,1 0,2 0,3 0,4 0,5 

0,25 
0,951 
0,950 

0,969 
0,968 

0,981 
0,980 

0,988 
0,987 

0,992 
0,992 

0,995 
0,995 

0,5 
0,843 
0,837 

0,879 
0,873 

0,907 
0,901 

0,928 
0,922 

0,944 
0,939 

0,957 
0,952 

0,75 
0,717 
0,705 

0,766 
0,753 

0,805 
0,792 

0,838 
0,824 

0,864 
0,851 

0,886 
0,873 

1,0 
0,596 
0,579 

0,651 
0,632 

0,698 
0,677 

0,738 
0,716 

0,772 
0,750 

0,801 
0,779 

1,5 
0,400 
0,380 

0,457 
0,434 

0,508 
0,482 

0,553 
0,524 

0,594 
0,563 

0,630 
0,598 

2,0 
0,269 
0,253 

0,321 
0,301 

0,368 
0,345 

0,412 
0,386 

0,452 
0,423 

0,490 
0,458 

3,0 
0,133 
0,125 

0,171 
0,161 

0,208 
0,196 

0,243 
0,228 

0,276 
0,258 

0,308 
0,287 

4,0 
0,075 
0,071 

0,104 
0,099 

0,132 
0,125 

0,160 
0,151 

0,186 
0,175 

0,212 
0,199 

Таблица 2 

Вероятности победы единицы X  ( 1,   1)   

æ  c
t  

0 0,1 0,2 0,3 0,4 0,5 

0,25 
0,925 
0,929 

0,945 
0,949 

0,960 
0,963 

0,971 
0,974 

0,978 
0,981 

0,984 
0,987 

0,5 
0,731 
0,747 

0,765 
0,782 

0,795 
0,814 

0,822 
0,841 

0,846 
0,865 

0,866 
0,885 

0,75 
0,542 
0,563 

0,581 
0,603 

0,618 
0,641 

0,651 
0,676 

0,683 
0,709 

0,712 
0,739 

1,0 
0,404 
0,421 

0,443 
0,463 

0,481 
0,503 

0,516 
0,540 

0,550 
0,575 

0,582 
0,608 

1,5 
0,241 
0,251 

0,276 
0,288 

0,311 
0,325 

0,344 
0,360 

0,377 
0,394 

0,408 
0,427 

2,0 
0,157 
0,163 

0,188 
0,195 

0,219 
0,227 

0,249 
0,259 

0,278 
0,290 

0,307 
0,320 

3,0 
0,081 
0,083 

0,106 
0,108 

0,130 
0,133 

0,154 
0,158 

0,177 
0,182 

0,200 
0,206 

4,0 
0,049 
0,050 

0,069 
0,070 

0,089 
0,091 

0,108 
0,111 

0,127 
0,130 

0,146 
0,150 
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Таблица 3 

Вероятности победы единицы X  ( 2,   0)   

æ  c
t  

0 0,1 0,2 0,3 0,4 0,5 

0,25 
0,947 
0,946 

0,966 
0,965 

0,978 
0,977 

0,986 
0,985 

0,991 
0,991 

0,994 
0,994 

0,5 
0,825 
0,823 

0,862 
0,859 

0,891 
0,888 

0,914 
0,911 

0,931 
0,928 

0,946 
0,943 

0,75 
0,685 
0,680 

0,733 
0,727 

0,773 
0,766 

0,806 
0,800 

0,835 
0,829 

0,859 
0,853 

1,0 
0,555 
0,547 

0,607 
0,599 

0,652 
0,644 

0,693 
0,684 

0,728 
0,718 

0,759 
0,749 

1,5 
0,356 
0,349 

0,407 
0,399 

0,454 
0,445 

0,497 
0,487 

0,537 
0,526 

0,573 
0,561 

2,0 
0,234 
0,229 

0,279 
0,273 

0,322 
0,315 

0,362 
0,354 

0,399 
0,390 

0,434 
0,424 

3,0 
0,115 
0,113 

0,149 
0,146 

0,181 
0,178 

0,212 
0,208 

0,242 
0,237 

0,271 
0,265 

4,0 
0,066 
0,065 

0,092 
0,091 

0,117 
0,116 

0,142 
0,140 

0,166 
0,163 

0,189 
0,186 

Таблица 4 

Вероятности победы единицы X  ( 2,   1)   

æ  c
t  

0 0,1 0,2 0,3 0,4 0,5 

0,25 
0,934 
0,935 

0,954 
0,955 

0,967 
0,968 

0,977 
0,978 

0,984 
0,985 

0,989 
0,989 

0,5 
0,766 
0,771 

0,801 
0,807 

0,832 
0,838 

0,857 
0,863 

0,879 
0,885 

0,897 
0,903 

0,75 
0,587 
0,595 

0,629 
0,638 

0,667 
0,676 

0,701 
0,711 

0,732 
0,742 

0,759 
0,770 

1,0 
0,445 
0,453 

0,488 
0,496 

0,528 
0,537 

0,565 
0,575 

0,599 
0,610 

0,631 
0,642 

1,5 
0,268 
0,273 

0,307 
0,312 

0,345 
0,351 

0,380 
0,387 

0,414 
0,422 

0,446 
0,455 

2,0 
0,175 
0,177 

0,209 
0,212 

0,242 
0,246 

0,274 
0,278 

0,304 
0,309 

0,334 
0,340 

3,0 
0,089 
0,090 

0,115 
0,117 

0,141 
0,143 

0,166 
0,168 

0,191 
0,193 

0,215 
0,218 

4,0 
0,053 
0,054 

0,075 
0,076 

0,096 
0,097 

0,116 
0,117 

0,136 
0,137 

0,155 
0,157 
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Рассмотрим вероятности побед единиц при 1   (табл. 1–2), при 
2   (табл. 3–4). Данные табл. 1 и 3 соответствуют значению 0,   

а в табл. 2 и 4 — значению 1.   Приведенное время ct  определим 

следующим образом: 

 1x cx y a t
c

x

k k
t e

a
   

при экспоненциальных зависимостях эффективных скорострельно-
стей от времени боя (7) и 

2

2
x c

c x y c
a t

t k k t
 

   
 

 

при линейных зависимостях эффективных скорострельностей боевых 
единиц от времени боя (16). 

Для сравнения в табл. 5 приведены значения 0xp  при const,v   

constu   (в этом случае ).ct uvt  

Таблица 5 

Вероятности победы единицы X  
при постоянных эффективных скорострельностях 

æ  c
t  

0 0,1 0,2 0,3 0,4 0,5 

0,25 0,941 0,961 0,974 0,982 0,988 0,992 

0,5 0,800 0,836 0,866 0,890 0,910 0,926 

1,0 0,500 0,548 0,591 0,630 0,665 0,697 

1,5 0,308 0,352 0,394 0,433 0,470 0,504 

2,0 0,200 0,239 0,276 0,311 0,345 0,377 

3,0 0,100 0,130 0,158 0,186 0,212 0,238 

4,0 0,059 0,082 0,105 0,127 0,148 0,169 

 
В табл. 1–5 рассматриваются значения ,ct  соответствующие про-

ведению единицей X  одного-двух выстрелов, при которых она не 
испытывает противодействия противника (при 0ct   единицы X  и 

Y  начинают боевые действия одновременно), так как в реальных бо-
евых условиях после проведения боевой единицей одного-двух вы-
стрелов она, как правило, будет обнаружена и по ней будет открыт 
ответный огонь. 

Проведенные расчеты показали, что упреждающий удар одной из 
боевых единиц оказывает существенное влияние на исход боя доста-
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точно близких по силам единиц. Так, при упреждающем ударе еди-
ницы X вероятность ее победы может увеличиться более чем на 0,2. 
При значительном превосходстве одной из единиц, т. е. при упре-
ждающем ударе единицы X влияние этого удара незначительно, если 

0, 4,

0,


 

æ
 

0,38,

1,


 

æ
 

5,

0,


 

æ
 а также 

4,

1.


 

æ
 

Отметим также некоторое снижение влияния упреждающего уда-
ра на исход боя с ростом ,  а также его большее влияние на исход 
боя при экспоненциальных зависимостях эффективных скорострель-
ностей боевых единиц от времени боя по сравнению с линейными 
зависимостями при 1,5.   При 2   эта разница несущественна. 

Сделанные расчеты также показали, что использование модели 
дуэльного боя с постоянными эффективными скорострельностями 
может привести к существенным ошибкам при вычислении его ос-
новных показателей как при одновременном открытии огня обеими 
боевыми единицами, так и при упреждающем ударе одной из них. 

Выводы. Проведенные исследования позволяют сделать следую-
щие выводы.  

1. На основе теории непрерывных марковских процессов разра-
ботаны модели дуэльного боя при различных зависимостях эффек-
тивных скорострельностей боевых единиц от времени боя. Получены 
расчетные формулы для вычисления основных показателей боя. По-
казано, что принятие эффективных скорострельностей в течение боя 
постоянными может в ряде случаев привести к существенным ошиб-
кам при оценке его результатов.  

2. Установлено существенное влияние упреждающего удара на 
исход боя близких по силам боевых единиц и его незначительное 
влияние на исход боя, если одна из них имеет существеннее превос-
ходство.  

3. Установлено, что упреждающий удар одной из боевых единиц 
в совокупности с более высокой степенью роста ее эффективной ско-
рострельности может в отдельных случаях компенсировать более чем 
двукратное начальное превосходство противника. 

4. Показана возможность использования аппроксимаций эффек-
тивных скорострельностей боевых единиц различными функциями 
времени боя, что в большинстве случаев (при 2  ) приводит к не-
значительным ошибкам в вычислении его основных показателей. 
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Stochastic models of the two unit duel fight 

© V.Yu. Chuev, I.V. Dubogray 

Bauman Moscow State Technical University, 105005, Russia 
 

On the basis of the theory of continuous Markov processes we developed models of the 
two unit duel fight. We obtained computing formulas for calculating the basic fight indi-
cators. Moreover, we found that the pre-emptive strike of one of the units participating in 
the fight has a significant impact on the fight outcome of the units which are similar in 
forces. The strike has a negligible impact, if one of the units has a significant advantage. 
The findings of the research show that the use of model with constant effective firing 
rates can lead to significant errors in the evaluation of its results. Finally, we found that 
the pre-emptive strike, coupled with a high degree of effective firing rate growth, can 
sometimes compensate for more than the double  initial superiority of the opponent. We 
show the possibility of using approximations of the effective firing rate of the fighting 
units by the different functions of the fight time. 
 
Keywords: fighting unit, the effective firing rate, duel fight, a fight between two units, 
correlation of forces parameter, continuous Markov process. 
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