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Обоснована целесообразность применения математического моделирования при 
разработке и совершенствовании современных технических устройств и систем. 
Представлены характерные этапы математического моделирования и последова-
тельность их выполнения. Рассмотрены особенности и основные методы коли-
чественного анализа математических моделей процессов в системах с распреде-
ленными параметрами (континуальных системах).  
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Введение. Совершенство большинства технических устройств 

зависит в основном от эффективности преобразования и перемеще-
ния ограниченного числа субстанций: массы, энергии, импульса, 
электрического заряда, информации. Эти процессы подчинены фун-
даментальным законам природы, составляющим предмет изучения 
механики, физики, химии и других естественнонаучных дисциплин. 
Магистральная линия создания принципиально новых и совершенст-
вования существующих технических устройств состоит в реализации 
возможностей, открывающихся при использовании результатов фун-
даментальных исследований в области этих дисциплин. Этим,  
в частности, можно объяснить и акцент в инженерном образовании 
на фундаментальную научную подготовку. Решающую роль при реа-
лизации таких исследований играет математическое моделирование, 
под которым понимают замену существующего или создаваемого 
технического устройства адекватной ему математической моделью и 
ее последующее количественное исследование путем вычислитель-
ного эксперимента с привлечением средств современной вычисли-
тельной техники [1].  

Роль математического моделирования в развитии техники. 
На пути реализации в технике наиболее перспективных научных от-
крытий и разработок часто стоят препятствия, связанные с отсутст-
вием или ограниченными возможностями конструкционных или 
функциональных материалов и с недостаточностью достигнутого 
технологического уровня. Поэтому процесс реализации научных и 
технических идей — это процесс поиска разумного компромисса ме-
жду желаемым и возможным, что доказывает история развития таких 
быстро прогрессирующих технических отраслей, как ядерная энерге-
тика, ракетно-космическая техника, приборостроение и вычисли-
тельная техника. 
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При создании технических устройств и систем различного назна-
чения обычно рассматривают несколько возможных вариантов про-
ектных решений, ведущих к намеченной цели. Эти варианты принято 
называть альтернативами. Учет противоречивых требований и поиск 
компромисса в решении комплекса возникающих при этом взаимо-
связанных проблем предполагают наличие достаточно полной и дос-
товерной количественной информации об основных параметрах, ко-
торые характеризуют возможные для выбора альтернативы. 

В складывавшейся десятилетиями последовательности основных 
этапов разработки технических устройств в большинстве отраслей 
машиностроения и приборостроения некоторый начальный объем 
необходимой информации удавалось сформировать путем так назы-
ваемых проектировочных расчетов, степень достоверности которых 
обеспечивала лишь довольно грубый отбор альтернатив. Основная 
часть необходимой для принятия окончательного решения количест-
венной информации (как по степени подробности, так и по уровню 
достоверности) формировалась на стадии экспериментальной отра-
ботки технических устройств. По мере их усложнения и удорожания, 
а также удлинения стадии их экспериментальной отработки значи-
мость проектировочных расчетов стала расти. Возникла необходи-
мость в повышении достоверности таких расчетов, обеспечивающей 
более обоснованный отбор альтернатив на начальной стадии проек-
тирования и формулировку количественных критериев для структур-
ной и параметрической оптимизации. 

Развитие сверхзвуковой авиации, возникновение ракетно-
космической техники, ядерной энергетики и ряда других наукоемких 
отраслей современного машиностроения и приборостроения привели 
к дальнейшему усложнению разрабатываемых и эксплуатируемых 
технических устройств и систем. Их экспериментальная отработка 
стала требовать все бóльших затрат времени и материальных ресур-
сов, а в ряде случаев ее проведение в полном объеме превратилось в 
проблему, не имеющую приемлемого решения. 

В этих условиях существенно возросло значение расчетно-
теоретического анализа характеристик таких устройств и систем. 
Этому способствовал и прорыв в совершенствовании вычислитель-
ной техники, приведший к появлению современных ЭВМ с большим 
объемом памяти и высокой скоростью выполнения арифметических 
операций. В результате возникла материальная база для становления 
и быстрого развития математического моделирования и появились 
предпосылки для использования вычислительного эксперимента не 
только на стадии отработки технического устройства, но и при его 
проектировании, подборе и оптимизации эксплуатационных режи-
мов, анализе надежности, прогнозировании отказов и аварийных си-
туаций, а также при оценке возможностей улучшения характеристик 
и модернизации технического устройства. Математическое модели-
рование играет важнейшую роль при информационном сопровожде-
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нии всего жизненного цикла технических устройств с применением 
современных CALS-технологий (Continuous Acquisition and Lifecycle 
Support) [2]. 

В настоящее время методология математического моделирования 
и вычислительного эксперимента стала составной частью общих 
подходов, характерных для современных информационных техноло-
гий. Ее практическая реализация существенно повышает эффектив-
ность инженерных разработок особенно при создании принципиаль-
но новых, не имеющих прототипов машин и приборов, материалов и 
технологий. Она позволяет сократить затраты времени и средств на 
использование в технике передовых достижений физики, химии, ме-
ханики и других фундаментальных наук.  

Последовательность этапов математического моделирования. 
Рассмотрим условную схему (рисунок), определяющую последователь-
ность отдельных этапов общей процедуры математического моделиро-
вания. Исходной позицией этой схемы служит технический объект 
(ТО), под которым понимают конкретное техническое устройство, агре-
гат или узел, систему устройств, процесс, явление или отдельную си-
туацию в какой-либо системе или устройстве. 

Последовательность этапов математического моделирования 

 
На первом этапе осуществляют неформальный переход от рас-

сматриваемого (разрабатываемого или существующего) ТО к его 
расчетной схеме (РС) (см. рисунок). При этом в зависимости от на-
правленности вычислительного эксперимента и его конечной цели 
выделяют те свойства, условия работы и особенности объекта, кото-
рые вместе с характеризующими их параметрами должны найти от-
ражение в РС, и аргументируют допущения и упрощения, позволя-
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ющие не учитывать в РС те качества ТО, влияние которых предпола-
гают в рассматриваемом случае несущественным. Иногда вместо РС 
используют термин содержательная модель [3], а в некоторых случа-
ях говорят о концептуальной модели. 

В сложившихся инженерных дисциплинах помимо описательной 
(вербальной) информации для характеристики РС разработаны спе-
циальные приемы и символы наглядного графического изображения. 
По ряду новых направлений развития техники подобная символика 
находится в стадии формирования. 

При разработке новых ТО успешное выполнение первого этапа в 
значительной мере зависит от профессионального уровня инженера, 
его творческого потенциала и интуиции. Полнота и правильность 
учета в РС свойств ТО, существенных с точки зрения цели исследо-
вания, являются основной предпосылкой получения в дальнейшем 
достоверных результатов математического моделирования. И наобо-
рот, сильная идеализация ТО ради получения простой РС может 
обесценить выполнение всех последующих этапов исследования. 

Содержание второго этапа заключается, по существу, в формаль-
ном, математическом описании РС. Это описание в виде математи-
ческих соотношений, устанавливающих связь между параметрами 
расчетной схемы ТО, и называют математической моделью (ММ). 
Для некоторых типовых РС существуют банки ММ, что упрощает 
процедуры второго этапа. Более того, одна и та же ММ может соот-
ветствовать расчетным схемам из различных предметных областей. 
Однако при разработке новых ТО часто не удается ограничиться 
применением типовых РС и отвечающих им уже построенных ММ. 
Создание новых ММ или модификация существующих должны опи-
раться на достаточно глубокую математическую подготовку и владе-
ние математикой как универсальным языком науки. 

На третьем этапе проводят качественный и оценочный количест-
венный анализ построенной ММ. При этом могут быть выявлены 
противоречия, ликвидация которых потребует уточнения или пере-
смотра РС (штриховая линия на рисунке). Количественные оценки 
могут дать основания упростить модель, исключив из рассмотрения 
некоторые параметры, соотношения или их отдельные составля-
ющие, несмотря на то что влияние описываемых ими факторов учте-
но в РС. В большинстве случаев, приняв дополнительные по отноше-
нию к РС допущения, полезно построить такой упрощенный вариант 
ММ, который позволял бы получить или применить известное точное 
решение. Это решение затем можно использовать для сравнения при 
тестировании результатов на последующих этапах процедуры мате-
матического моделирования. В некоторых случаях  для одного и того 
же ТО удается построить несколько ММ с различным уровнем упро-
щения. В таких случаях говорят об иерархии ММ, имея в виду их 
упорядочение по признаку сложности и полноты. 
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Построение иерархии ММ связано с различной детализацией 
свойств изучаемого ТО. Сравнивая результаты исследования различ-
ных ММ, можно существенно расширить и обогатить знания об этом 
ТО. Кроме того, такое сравнение позволяет оценить достоверность 
результатов последующего вычислительного эксперимента: если бо-
лее простая ММ правильно отражает некоторые свойства ТО, то ре-
зультаты исследования этих свойств должны быть близки к результа-
там, полученным при использовании более полной и сложной ММ.  

Итог рассматриваемого этапа состоит в обоснованном выборе ра-
бочей математической модели ТО, которая подлежит в дальнейшем 
детальному количественному анализу. Успех третьего этапа зависит, 
как правило, от глубины понимания связи отдельных составляющих 
ММ со свойствами ТО, нашедшими отражение в его РС, что предпо-
лагает органичное сочетание владения математикой и инженерными 
знаниями в конкретной предметной области.  

Обоснованный выбор метода количественного анализа рабочей 
ММ и разработка эффективного алгоритма вычислительного экспе-
римента составляют содержание четвертого этапа, а создание рабо-
тоспособной программы, реализующей этот алгоритм средствами 
вычислительной техники — содержание пятого этапа (см. рисунок). 
Для успешного выполнения четвертого этапа необходимо владеть 
арсеналом современных методов вычислительной математики, а вы-
полнение пятого этапа при математическом моделировании доста-
точно сложных ТО требует профессиональной подготовки в области 
программирования. 

Результаты вычислений, получаемые на шестом этапе в итоге ра-
боты программы,  должны прежде всего пройти тестирование путем 
сопоставления с данными количественного анализа упрощенного ва-
рианта ММ рассматриваемого ТО. Тестирование может выявить не-
дочеты как в программе, так и в алгоритме и потребовать либо дора-
ботки программы, либо модификации и алгоритма, и программы. 
Анализ результатов вычислений и их инженерная интерпретация мо-
гут вызвать необходимость в корректировке РС и соответствующей 
ММ. После устранения всех выявленных недочетов триаду модель — 
алгоритм — программа [4] можно использовать в качестве рабочего 
инструмента для проведения вычислительного эксперимента и выра-
ботки на основе получаемой количественной информации практиче-
ских рекомендаций, направленных на совершенствование ТО, что со-
ставляет содержание седьмого, завершающего технологический цикл 
этапа математического моделирования. 

Представленная последовательность этапов носит достаточно 
общий и универсальный характер, хотя в некоторых конкретных слу-
чаях она может быть несколько изменена. Если при разработке ТО 
можно использовать типовые РС и ММ, то отпадает необходимость в 
выполнении ряда этапов, а при наличии соответствующего про-
граммного комплекса процесс математического моделирования ста-
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новится в значительной степени автоматизированным. Однако мате-
матическое моделирование ТО, не имеющих близких прототипов, как 
правило, связано с проведением всех этапов описанного технологи-
ческого цикла. 

Осуществление отдельных этапов требует определенных знаний, 
навыков и практической подготовки. Если на первом, седьмом и час-
тично на шестом этапах решают инженерные задачи, то второй, третий 
и четвертый этапы требуют обычно серьезной математической подго-
товки, а пятый — навыков в разработке и отладке ЭВМ-программ. По-
этому к математическому моделированию сложных ТО приходится 
привлекать и инженеров, и математиков, и программистов. Однако для 
координации их усилий необходимы специалисты, способные выпол-
нять каждый из рассмотренных этапов на высоком профессиональном 
уровне. Подготовка таких специалистов составляет одну из ключевых 
проблем, от успешного решения которой зависит эффективное исполь-
зование возможностей математического моделирования в развитии и 
совершенствовании техники. Решение этой проблемы, вероятно, по  
силам ряду созданных в последние десятилетия технических универси-
тетов.  

Особенности математического моделирования процессов в 
континуальных технических системах. При математическом моде-
лировании технических устройств нередко возникает необходимость 
в количественном анализе процессов, протекающих в системах с 
распределенными параметрами (в континуальных системах), когда 
важно располагать информацией о распределении в пространстве и 
изменении во времени таких параметров, как температура, давление, 
перемещения и деформации, механические напряжения, скорость, 
электрический потенциал, напряженность электрического или маг-
нитного поля и т. п. Такая информация существенна при разработке и 
оптимизации технологических процессов и рабочих процессов в 
энергетических установках различного назначения, при анализе про-
цессов деформирования и динамики конструкций, в том числе тепло-
напряженных, а также процессов взаимодействия среды с электро-
магнитными полями в приборных устройствах.  

Теоретической основой построения ММ процессов в контину-
альных системах являются механика и электродинамика сплошной 
среды [5, 6]. В достаточно общем случае такие модели должны опи-
сывать поведение системы на трех уровнях: взаимодействие системы 
в целом с внешней средой; взаимодействие между микрообъемами 
системы и свойства отдельно взятого микрообъема. Эти уровни (но в 
обратном порядке) соответствуют выбору или получению уравнения 
состояния среды в микрообъеме, использованию законов сохранения 
и переноса физических субстанций (массы, импульса, момента им-
пульса, энергии, электрического заряда) для описания взаимодейст-
вия микрообъемов и, наконец, формулировке граничных условий, 
описывающих взаимодействие системы с внешней средой.  
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В такие модели входят характерные для задач математической 
физики уравнения с частными производными и/или интегральные 
уравнения. Эти модели могут содержать также интегральные функ-
ционалы от допустимых распределений параметров рассматриваемой 
континуальной системы, достигающие стационарных значений на 
искомых распределениях, что отвечает формулировке соответст-
вующей задачи с использованием некоторого вариационного прин-
ципа.  

Если ММ континуальной системы содержит дифференциальные 
уравнения с частными производными, то ее количественный анализ 
можно провести методом конечных разностей (МКР) [7, 8]. Он ос-
нован на конечно-разностной аппроксимации производных от иско-
мых распределений параметров и сведении исходной ММ к ее дис-
кретному аналогу, содержащему систему конечных уравнений 
относительно неизвестных значений параметров в узлах пространст-
венно-временной сетки. Решение такой системы (что само по себе 
может представлять достаточно сложную алгоритмическую и вычис-
лительную проблему) дает дискретный набор узловых значений, по 
которым при необходимости путем интерполяции можно построить 
непрерывные распределения параметров. При математическом моде-
лировании процессов в движущейся среде возможна модификация 
МКР в виде метода частиц в ячейках (метода крупных частиц) [7].  

От основных недостатков МКР, связанных с дискретным харак-
тером получаемых результатов и трудностями представления про-
странственной сеткой области сложной конфигурации, свободен ме-
тод конечных элементов (МКЭ) [8, 9]. Он основан на разбиении 
области, в которой протекает рассматриваемый процесс, конечными 
элементами, в пределах каждого из которых задают непрерывные 
распределения параметров, выраженные через неизвестные узловые 
значения параметров и их пространственных производных. Гибкость 
формы конечных элементов позволяет, в принципе, достаточно точно 
представить конфигурацию области, однако для реализации МКЭ не-
обходимо располагать ММ рассматриваемого процесса в интеграль-
ном виде. 

Одним из вариантов интегральной формы ММ изучаемого про-
цесса является вариационная формулировка соответствующей зада-
чи, содержащая функционал, достигающий на искомом распределе-
нии параметров экстремального значения. В этом случае из условия 
экстремума функционала можно получить систему конечных уравне-
ний (обычно систему линейных алгебраических уравнений (СЛАУ) 
благодаря линеаризации и использованию процедуры последова-
тельных приближений для нелинейных процессов) относительно не-
известных узловых значений параметров и затем использовать для 
нахождения этих значений численные методы решения таких систем 
[8, 10]. Иной путь состоит в построении дискретного аналога экстре-
мального функционала и сведения классической экстремальной ва-
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риационной задачи (задачи бесконечномерной оптимизации) к задаче 
конечномерной оптимизации, чтобы воспользоваться одним из под-
ходящих численных методов ее решения [11, 12].  

Существенным преимуществом ММ, содержащей экстремальный 
функционал, является не только широкий выбор алгоритмов вычис-
ления неизвестных узловых значений параметров, но и возможность 
оценки погрешности приближенного решения и оценки его сходимо-
сти к искомому истинному решению [13]. Если на истинном решении 
функционал достигает минимального значения, то из двух прибли-
женных решений предпочтение следует отдать тому, который отве-
чает меньшему значению функционала. В этом случае числовое зна-
чение функционала приобретает самостоятельную информационную 
ценность, выступая в качестве обобщенного интегрального критерия 
для сравнительной оценки двух и более приближенных решений и 
выбора наилучшего из них. 

Для количественной оценки погрешности приближенного решения 
или для контроля сходимости процесса последовательных приближе-
ний необходимо, строго говоря, располагать разностью *=J J J   
значений минимизируемого функционала ,J  соответствующих при-
ближенному ( )J   и истинному ( )J   решениям. Поскольку истинное 
решение неизвестно, неизвестно и значение *.J  Однако в большинстве 
случаев это значение можно оценить не только сверху, но и снизу на 
основе двойственной (альтернативной) вариационной формы математи-
ческой модели. Она содержит функционал ,I  достигающий на истин-
ном решении максимального значения * *=I J  [9, 13]. Это позволяет 
оценить значение J  сверху, а значения J   и I   альтернативных функ-
ционалов на приближенном решении дают возможность получить дву-
стороннюю (и сверху и снизу) оценку некоторых важных интегральных 
характеристик рассматриваемого процесса (например, передаваемый в 
системе тепловой поток или электрический ток, суммарное термическое 
или электрическое сопротивление системы, подводимую мощность или 
приложенную силу, осредненные значения характеристик неоднород-
ных материалов и т. п. [5, 14]). 

При отсутствии вариационной формулировки необходимую для 
применения МКЭ интегральную форму ММ рассматриваемого про-
цесса можно получить путем преобразования дифференциальной 
формы модели с помощью одного из проекционных методов (извест-
ных в литературе также под названием методов взвешенных невя-
зок), например метода Галеркина – Петрова или метода Бубнова –
Галеркина [8, 15]. 

Для количественного анализа моделей процессов в континуаль-
ных системах перспективен метод граничных элементов (МГЭ)  
[8, 16]. Для применения МГЭ модель предварительно следует при-
вести к форме, содержащей граничные интегральные уравнения с не-
известными распределениями искомых параметров на границе облас-
ти, в которой протекает рассматриваемый процесс. Такая 
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модификация ММ позволяет понизить размерность задачи и тем са-
мым дает возможность экономить вычислительные ресурсы. При 
этом необходимо аппроксимировать лишь одномерную (для случая 
двумерной задачи) или двумерную (для случая трехмерной задачи) 
границу произвольной по конфигурации области. 

Еще одним преимуществом МГЭ является зачастую более точная 
передача решения внутри расчетной области, особенно в случае, ко-
гда решение имеет особенности типа пограничных слоев, концентра-
торов напряжений и т. п. Дело в том, что решение, найденное сначала 
только на границе, далее может быть восстановлено в любой наперед 
заданной внутренней точке области некоторым прямым методом с 
любой наперед заданной точностью. Кроме того, МГЭ позволяет 
численно находить решение в неограниченных областях. В этом со-
стоит одна из причин популярности этого метода при расчете внеш-
них задач акустики, электродинамики, связанных с изучением рас-
пространения волн в неограниченном пространстве. При решении 
сложных связанных задач (например, контактных задач теории упру-
гости или задач о взаимодействии упругого твердого тела и потока 
жидкости) МГЭ может быть использован в сочетании с другими ме-
тодами, в частности с МКР и МКЭ. 

Недостатком МГЭ является необходимость располагать аналити-
ческим представлением фундаментального решения оператора зада-
чи [8], известным лишь для ограниченного числа линейных процес-
сов. Тем не менее в ряде случаев такое представление можно 
использовать в сочетании с методом последовательных приближений 
для решения линейной задачи в области с неоднородными характе-
ристиками или для решения нелинейной задачи [9]. 

При моделировании процессов в континуальных системах чис-
ленная реализация МКР, МКЭ и МГЭ обычно в конечном счете свя-
зана с решением достаточно больших СЛАУ. В случаях МКР и МКЭ 
матрицы СЛАУ сильно разрежены. Это позволяет экономить память 
ЭВМ для хранения таких матриц и повысить эффективное быстро-
действие за счет меньших объемов передаваемой информации при 
обмене между оперативной и внешней памятью, а также путем рас-
параллеливания некоторых вычислительных процедур, составляю-
щих алгоритм решения СЛАУ, на многопроцессорных ЭВМ [17–19]. 
При прочих равных условиях порядок СЛАУ при численной реали-
зации МГЭ существенно ниже, чем для МКР или МКЭ, но матрица 
такой СЛАУ будет полностью заполненной. Наряду с обычным вари-
антом МГЭ предложен так называемый Fast Multipole Boundary 
Element Method [20, 21]. Его эффективность на несколько порядков 
выше, чем у обычного варианта МГЭ, а число необходимых вычис-
лительных операций примерно пропорционально числу неизвестных 
параметров на границе области [8]. 

Развитие методов решения СЛАУ в настоящее время происходит 
как по линии создания новых, так и по линии модернизации классиче-
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ских алгоритмов. В частности, большие возможности открывает много-
сеточный метод решения СЛАУ, позволяющий достичь неулучшаемых 
характеристик по затратам вычислительных ресурсов [8].  

Заключение. Из рассмотренных особенностей математического 
моделирования технических устройств следует, что сложившаяся в 
процессе своего становления и развития методология вычислитель-
ного эксперимента в настоящее время является эффективным инст-
рументом в процессе разработки и совершенствования сложных и 
наукоемких образцов современной техники. Вместе с тем возможно-
сти математического моделирования в этом направлении еще далеко 
не исчерпаны и заслуживают еще более широкого применения.  

Рассмотренная последовательность этапов математического мо-
делирования показывает, что их осуществление требует органичного 
сочетания инженерных знаний в конкретной предметной области, 
владения математическим аппаратом и навыками программирования. 
Поэтому для более широкого использования в технике методологии 
математического моделирования необходимо обеспечить квалифи-
цированное кадровое сопровождение. 
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Special features of mathematical modeling of technical  

instruments 

© V.S. Zarubin, G.N. Kuvyrkin 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The paper gives grounds for applying mathematical modeling in the development and 
improvement of modern technical instruments and systems. It also shows typical stages of 
mathematical modeling and the sequence of their execution. The authors describe special 
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features and basic methods in quantitative analysis of mathematical models of systems 
with distributed parameters (in continuous systems). 

Keywords: mathematical modeling, computing experiment, a continuous system. 
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