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Рассмотрены способы восстановления параметров движения летательного аппа-
рата в контейнере по данным их регистрации с большой дискретностью в процес-
се экспериментальной отработки газодинамического выброса. 

Ключевые слова: газодинамический выброс, летательный аппарат, восстановле-
ние параметров движения, кусочно-полиномиальная интерполяция. 

Моделирование движения летательного аппарата (ЛА) в контей-
нере представляет собой сложную задачу, при решении которой в 
общей постановке необходимо учитывать сопряженные процессы 
движения газовой среды, обтекающей ЛА, движения самого ЛА, теп-
лообмена в контейнере, а также термомеханические процессы де-
формирования корпуса контейнера и ЛА. Решению сопряженных за-
дач взаимодействия корпуса ЛА с окружающей газовой и жидкой 
средой посвящены работы [1–5].  

При экспериментальной отработке систем газодинамического 
выброса ЛА из контейнера [6, 7] обычно измеряют основные пара-
метры функционирования этой системы: ускорение ЛА, давление в 
контейнере, тепловые параметры и т. п. Во всех случаях важно опре-
делить по результатам испытаний динамические параметры, характе-
ризующие продольное движение ЛА в контейнере. Этими парамет-
рами являются путь, скорость и ускорение ЛА, давление в свободном 
пространстве контейнера за кормой ЛА, массовый расход и тяга 
стартовых двигателей. В конкретных ситуациях объем измеряемых 
параметров может быть неполным, тогда для определения (восста-
новления) некоторых из приведенных параметров применяют мате-
матические методы. 

В работе [8] представлены примеры восстановления параметров 
при динамически неполных измерениях, когда при испытаниях до-
стоверно регистрировалось либо ускорение ЛА, либо давление в кон-
тейнере, а другой из этих параметров не измеряли или же при записи 
произошла существенная потеря информации. В этом случае воз-
можно удовлетворительное восстановление недостающих динамиче-
ских параметров с использованием уравнения продольного движения 
ЛА в контейнере. 
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Временной масштаб физических процессов, сопровождающих 
движение ЛА внутри контейнера, мал по сравнению с последующи-
ми траекторными участками. Если бортовые системы регистрации 
параметров движения ЛА не «подстраиваются» под участок движе-
ния в контейнере, то сохраненные данные оказываются малопри-
годными для содержательного количественного анализа параметров 
газо-динамического выброса. В частности, по зафиксированным 
значениям ускорения ЛА невозможно восстановить интерполяцией 
пик ускорения. В то же время бортовые системы также фиксируют 
пройденный путь и скорость движения ЛА, что дает дополнительную 
информацию. Такой объем измерений параметров движения ЛА 
назовем дискретной регистрацией кинематических параметров [8]. 
Метод работы [8] предполагает одновременную регистрацию значе-
ний пути, скорости и ускорения ЛА и при условии, что данные за-
писаны не реже, чем, допустим, с интервалом 0,1  с, обеспечивает 
удовлетворительное восстановление всей совокупности параметров 
движения ЛА в контейнере. В данной работе указанный подход 
применен для общего случая возможной неодновременной реги-
страции кинематических параметров. 

Рассматривая вопрос методически, зададим полный набор кинема-
тических данных: зависимости от времени t  пути L  ЛА в контейнере, 
скорости V  и ускорения A  ЛА при движении в контейнере [6, 7]. Ме-
тоды реконструкции будем применять к выборкам из этого набора. 
Наличие полных исходных данных позволяет контролировать точ-
ность восстановления параметров. Указанные зависимости приведе-
ны на рис. 1 в безразмерном виде. Время отсчитывается от нуля и от-
несено к длительности рассматриваемого в статье интервала регистра-
ции max ,t  путь — к максимальному значению max ,L  скорость и уско-

рение — к отношениям max maxL t  и 2
max maxL t  соответственно. 

«Полные» данные задаются с шагом полн 0,00625,t   в промежутках 
восполняются линейной интерполяцией. 

Спектральный анализ и реконструкция графика ускорения ЛА. 
Проанализируем предварительно график ускорения A  (см. рис. 1)  
с точки зрения его спектральных свойств. Будем считать, что ( ) 0A t   вне 

отрезка  0;T , 1T  . Метод Фурье позволяет представить ( )A t  в виде и 

ряда и интеграла Фурье. Выбрав интегральное представление, вычислим 

энергетический спектр 
2( ) ( )AS  , где ( )

0

( ) ( )
T

A iS A e d      [9], при-

чем вследствие вещественности ( )A t  имеем ( ) ( )( ) ( )A AS S   . По-
скольку спектр быстро затухает при   (рис. 2), его можно ограни-
чить некоторым значением 2c cf   .   
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Рис. 1. Полный набор кинематических параметров 

Тогда обратное преобразование Фурье для усеченного спектра  

( )
( ) ( ), ;
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0,

A
cA

c
c

S
S

    
 

 

дает приближенное восстановление исходной зависимости 

1 ( )

0

( ) Re ( ) ( )
c

A i t
cA t S e d A t


    .  

На рис. 2 выделены некоторые характерные точки энергетическо-
го спектра. Выбирая приведенные значения в качестве линейной ча-
стоты cf  усечения спектра, получаем ряд приближений к исходной 
зависимости ( )A t  (рис. 3). 

Интегральное преобразование Фурье (ИПФ) позволяет анализи-
ровать заданную зависимость на языке частоты  , непрерывно изме-
няющейся вдоль вещественной оси. Существуют и другие представ-
ления со своими «языками». Например, в численном анализе широко 
применяется дискретное преобразование Фурье (ДПФ) [10, 11]. Рас-
смотрим вариант ДПФ, в котором упорядоченный набор чисел 

1
0{ }N

j ja 
  взаимно однозначно преобразуется в упорядоченный набор 

чисел      1 11( ) ( ) ( )
00 0

{ }запишем это как
N NND D D

j jk kk k
c F a c

 
 

   
 со-

гласно следующим формулам преобразований: 

 
1

( ) 1 1

0

exp 2 ;
N

D
jk

j

c N a i j k N


 


       

1
( ) 1

0

exp 2 .
N

D
j k

k

a c i j k N






   
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Рис. 2. Безразмерная спектральная характеристика зависимости ( ):A t  

1 — энергетический сектор A(t); 2–5 — f равно соответственно 1,323, 2,580, 
6,864 и 13,37 

 
Рис. 3. Восстановление зависимости ( )A t  по усеченным спектрам: 

1 — экспериментальная зависимость; 2–5 — зависимости, восстановленные  
в диапазонах частот соответственно 0…1,323, 0…2,580, 0…6,864 и 0…13,37 
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Полагая  ja A j  ,   1
1T N

  , 0,1, ..., 1j N  , вычислим 
( ) ( )AS   по формуле прямоугольников: 

 
0,5 1

1( )

00,5

( ) ( ) exp 1 .
1

T N
A i

j
j

T
S A e d a i jT N

N

  
 

 

           

Видно, что        1( )
01

NDA
k j

T N
S F A j

N




  


 лишь при дискрет-

ных значениях частоты 
 2 1

k
k N

T N

 
  , 0,1.. 1k N  . Следовательно, 

однократное применение ДПФ дает существенно меньший объем ин-
формации по сравнению с ИПФ. Для вычисения ИПФ с шагом 

 2 1N

T N

 
  придется применять ДПФ многократно  1, 2, ... ,l   

модифицируя при этом исходный набор значений: 

       1
1( ) ( )

0
exp 1

1

N
A D

k
j

T N
S l F A j i l jT N

N





             
. 

Однако, приняв ( ) 0D
kc   при условии 

1
cf T N

k
N




  k c   и вы-

полнив обратное ДПФ, получим намного более эффективное реше-
ние задачи (см. рис. 3). Таким образом, ДПФ, малоэффективное для 
вычисления теоретико-функциональных аналогов–интегралов и ря-
дов Фурье [10], является в то же время мощным аппаратом решения 
задач, сформулированных на языке дискретных частот 12k k T     

 0,1.. 1 .k N   

Еще одним важным результатом спектрального анализа является 
теорема отсчетов Уиттекера — Котельникова — Шеннона для функ-
ций с ограниченным спектром [9]. По построению функция ( )cA t  
имеет ограниченный спектр: 

 

1 ( )

0

1 ( ) ( )

( ) Re ( )

2 ( ) ( ).

i A i t i
с c

A i t i A
c c

A e d S e d e d

S e d e d S

  
     

 
 

   

 

       
  

        
  

  

 
 

Однако ее носителем является уже вся вещественная ось, а не отрезок 

 0;T , как у функции ( )A t . По теореме отсчетов функция ( ),cA t  спектр 
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которой ограничен круговой частотой 2c cf   , однозначно определена 

своими значениями в точках jt j    0, 1, 2,...j    , заданных с ша-

гом   1
2 cf

 , и вычисляется как сумма ряда Котельникова [9]: 

    
 

sin
( )

c j
c c j

c jj

t t
A t A t

t t





 


  . (1) 

Функция ( )A t  задана на конечном отрезке  0;T  и не может иметь 

ограниченного спектра, но при достаточно большом значении частоты 
усечения c  на отрезке  0;T  справедливо равенство ( ) ( ),cA t A t  отку-

да    j j c jA A t A t  . Подставляя в ряд (1) значения jA  вместо значе-

ний  c jA t , получаем приближенное восстановление зависимости ( ):A t  

 
 

  
Кот

0;

sin
( ) ( ) .

j

c j
j

c jt T

t t
A t A t A

t t

 
 

   (2) 

В этом состоит сущность обобщенной теоремы отсчетов [9]. 
Для данных A  на рис. 1 пик устойчиво воспроизводится при вы-

боре 31...32.cf   Результаты расчета для 32cf   (интервал между точ-

ками отсчета составляет 164 0,0156  ) приведены на рис. 4.  
 

 
Рис. 4. Восстановление зависимости ( )A t  на основании теоремы отсчетов 

(кружочками обозначены точки отсчета): 
1 — экспериментальная зависимость; 2 — сумма ряда Котельникова 
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Очевидно, что при количестве точек отсчета, при котором исходная 
зависимость A(t) удовлетворительно описывается рядом Котельникова 
[9], линейная интерполяция также оказывается удовлетворительной. 
При наличии у графика ускорения негладких участков она даже более 
предпочтительна. Но, поскольку линейная интерполяция при дискрет-
ной реконструкции лишь одного ускорения ЛА не подходит, то и рас-
смотренный в статье спектральный подход не годится. Удовлетвори-
тельное восстановление кинематических параметров ЛА при движении 
в контейнере в этой ситуации становится невозможным. 

Дискретная реконструкция кинематических параметров ЛА 
при совпадающих точках регистрации. При дискретной регистра-
ции зависимостей от времени пути, скорости и ускорения ЛА в кон-

тейнере известны значения   ( ) ( ),L L
jj jt L L t ,   ( ) ( ),V V

jj jt V V t , 

  ( ) ( ),A A
jj jt A A t  с некоторым постоянным шагом t , который явля-

ется слишком большим для успешного применения обычной интер-
поляции. В работе [8] рассмотрен метод восстановления по этой ин-
формации полных кинематических данных, ограниченный условием 
одновременной регистрации параметров: ( ) ( ) ( ).L V A

j j j jt t t t    В этом 

случае восстановление данных на каждом из отрезков 1;j jt t     мож-

но выполнять независимо. Действительно, на концах отрезка 

1;j jt t     известны значения L , L V  и L A  (точками обозначены 

производные по времени). При кусочно-полиномиальной аппрокси-

мации 
1

5
(П)

;
0

( )
j j

k
j k

t t
k

L t a t
   

   для ( )L t  условия  (П)
j jL t L , 

 (П)
j jL t V ,  (П)

j jL t A  в точках jt  и 1jt   позволяют составить не-

вырожденную систему линейных алгебраических уравнений (СЛАУ) 
относительно коэффициентов j ka  и обеспечивают непрерывность 

функций (П)L , (П)L  и (П).L  
Проиллюстрируем данный подход на примере выборки из полных 

данных, представленных на рис. 1. Результаты вычислений для выбор-
ки, составленной относительно начальной точки 0 0t   с шагом 

0,125t  , приведены на рис. 5. Восстановление данных хорошее, в от-
личие от сплайновой аппроксимации ускорения по заданной выборке. 

Начало отсчета 0t  и шаг t  влияют на качество восстановления 
данных (рис. 6). Оценивая уклонение реконструированной зависимо-

сти (П) ( )f t  от исходной ( )f t  величиной 
22

2 (П)10 ,f LL
d f f f   

выраженной в процентах, где 
2

2 2

0

T

L
f f d  ,  , ,f L V A , получаем 
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при 0 0t   и 0,0125...0, 25t   ошибки 0,002...0, 25Ld  , 
0,1...2, 4,Vd   2,6...28,Ad   а при 0,125t   и 0 0...0,125t   ошибки 
0,01...0,03,Ld   0, 22...0,57,Vd   6,1...13, 4.Ad   В данном примере 

удовлетворительная реконструкция ускорения будет в диапазоне 
0,016 0,15t   (оптимум 0,04...0,05t  ). 

 

 
Рис. 5. Восстановление параметров при дискретной регистрации с крат-

ными узлами  ( ) ( ) ( )
0, 0, 0,125L V A

j j jt t t t t     : 

1, 5, 8 — полные данные для A/10, L и V; 2–4 — для A/10 соответственно дискретные 
данные, сплайн по дискретным данным и реконструкция; 6, 7 и 9, 10 — дискретные 
                       данные и реконструкция соответственно для L и V 
 

С ростом t  пик ускорения слишком занижается, а с приближени-
ем сверху к шагу дискретности полных данных полнt  увеличивается 
«зашумленность» результатов, вызванная несогласованным восполне-
нием полных данных между известными значениями (см. рис. 6). При 
хорошо подготовленных данных этот эффект пропадает. Скорость и 
путь восстанавливаются с высокой точностью. 

Маршевый (пошаговый) подход в общем случае дискретной 
реконструкции. В общем случае произвольно заданных узлов (с одним 
и тем же шагом дискретности t ) будем строить кусочные полиномы 
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Рис. 6. Качество восстановления данных при малых и больших шагах вы-

борки  0 00,02925, 0,01; 0,03925, 0,1875 :t t t t       

1, 6 — полные данные для A/10 и V; 2, 4 — выборка для A/10 с шагом соответствен-
но 0,1875 и 0,01; 3, 5, 7 и 8 — восстановление данных с шагами 0,1875 и 0,01 соот-

ветственно для A/10 и V  

на отрезках ( ) ( )
1;A A

j jt t  
  , чтобы через границы отрезков продолжать 

графики пути и скорости, а не график ускорения, который наименее 
точен (как вторая производная от пути). Взаимную нумерацию узлов 
регистрации подчиним при этом условиям 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1, .A L A A V A

j j j jj jt t t t t t      (3) 

При некратных узлах регистрации число условий на отрезке 
( ) ( )

1;A A
j jt t  

   снижается с шести до четырех. Нельзя, однако, соответ-

ствующим образом понизить до третьей степени порядок кусочных 
полиномов, поскольку у графиков пути и скорости возникнут разрывы 

при переходе через узлы ( ).A
jt  Рассмотрим следующее формальное 

обобщение предыдущего подхода, в котором пятый порядок аппрок-
симирующих полиномов сохраняется. На это обобщение будем в 
дальнейшем ссылаться как на маршевую (пошаговую) реконструкцию. 
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Первый узел ( )
0

At  всегда можно отнести к начальному состоянию 

      ( ) ( ) ( )
0 0 0 0.A A AL t V t A t    (4) 

Добавляя к этим условиям три условия в узлах ( )
1 ,Lt  ( )

1 ,Vt  ( )
1 ,At  име-

ем СЛАУ для вычисления коэффициентов полинома ( ) ( )
0 1

( )

;
( ) A At t

L t
 
  

  

5

0
0

.k
k

k

a t


   Решив ее, находим затем значения   ( ) ( )
0 1

( ) ( ) ( )
1 1

;
,

A A

A A

t t
L L t

 
  

  

  ( ) ( )
0 1

( ) ( ) ( )
1 1

;A A

A A

t t
V L t

 
  

  , что позволяет продолжить вычисления на 

следующем отрезке и т. д. 
К сожалению, результаты реконструкции данным методом ока-

зываются совершенно неудовлетворительными. Если расчет для слу-
чая кратных узлов регистрации обладал свойством локальности (вы-
числения на каждом из отрезков 1;j jt t     выполнялись независимо), 

то в пошаговом методе вычисления на отрезке ( ) ( )
1;A A

j jt t  
   выполня-

ются с использованием «начальных данных» ( )A
jL , ( )A

jV , включивших 

в себя погрешности, накопленные при предыдущих вычислениях. 
Покажем, что решающее значение имеет накопление ошибок ап-

проксимации, а не погрешностей машинной арифметики. Пусть, 
например, мы имеем выборку из точных данных 0,5( )L t t , 

0,5( ) 0,5V t t , 1,5( ) 0, 25A t t , соответствующую расстановке узлов 

0,1t  , ( )
1 0,15Lt  ,  

1 0,105Vt  , ( )
0 0,085At  , к которой добавим 

начальные условия, аналогичные условию (4), но вычисленные по 

заданным точным зависимостям. Полином ( ) ( )
1

( )

;
( ) A A

j jt t
L t




 
  

 предста-

вим таким образом, чтобы обеспечить выполнение условий на левой 
границе отрезка: 

( ) ( )
1

2
( ) ( ) ( ) 2 3

;
0

( ) 0,5 ,A A
j j

A A k
j jkj j

t t
k

L t L V A



 
   

         

где ( )A
jt t  . Легко выписать СЛАУ относительно оставшихся трех 

неизвестных, методом исключения понизить ее порядок до второго  
и выписать точные формулы для коэффициентов по правилу Краме-

ра. Тогда по результатам вычислений на отрезке ( ) ( )
0 1;A At t 

   заданные 
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условия будут удовлетворены полиномом ( ) ( )
0 1

( )

;
( ) A At t

L t
 
  

 точно или 

с уровнем погрешности порядка машинного эпсилона [12]. В то же 

время начальные данные ( )
1 ,AL  ( )

1
AV  для вычислений на следующем 

отрезке приобретают погрешности относительно точных значений — 
примерно 0,04 и 0,7 % соответственно, причем эти значения устойчи-
вы относительно возмущений коэффициентов 0 .k  

Таким образом, для гладких исходных зависимостей и точных 
начальных условий уже на первом шаге метода получается конечный 
уровень погрешности. Далее процесс накопления ошибки продолжа-
ется лавинообразно, и даже график пути неадекватно воспроизводит 
исходные данные. Такая схема вычислений несостоятельна. 

Глобальные кусочно-полиномиальные интерполирующие 
функции. В пошаговом методе непрерывность реконструированных 

графиков пути и скорости обеспечивалась переносом значений ( ) ,A
jL  

( ) ,A
jV  вычисленных на отрезке ( ) ( )

1;A A
jjt t 

  , на следующий отрезок 

( ) ( )
1;A A

j jt t  
   в качестве левых граничных значений. Условия непре-

рывности можно автоматически выполнить, если значения ( )A
jL , ( )A

jV  

включить в состав узловых значений кусочно-полиномиальной ин-
терполяции. В случае когда в узлах задается не только функция, но и 
ее производные, интерполяция называется эрмитовой [13]. При по-

строении такой интерполяции на отрезке ( ) ( )
1;A A

j jt t  
   будем для общ-

ности и для удобства записи делать различие между зарегистриро-
ванными значениями 1jL  , 1jV  , jA , 1jA   и соответствующими узло-

выми значениями интерполяции ( )
1

L
jL  , ( )

1
V

jV  , ( )A
jA , ( )

1
A

jA  . Кроме того, 

узловыми значениями интерполяции будут также ( )A
jL , ( )A

jV , ( )
1

A
jL  , 

( )
1

A
jV   и ( )

1
V
jL  . 

Каждому узлу интерполяции поставим в соответствие его «сте-
пени свободы» ,  согласно заданию в этом узле значения функции 

 0  и(или) ее производных соответствующего порядка. Например, 

если узел ( )
1

V
jt   является внутренним и с ним связывается лишь значе-

ние скорости ( )
1

V
jV  , то этот узел имеет одну степень свободы 1  . 

Каждый из граничных узлов ( )A
jt  и ( )

1
A

jt   будет иметь по три степени 

свободы  0,1,2 . Для степеней свободы узлов и соответствующих 
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узловых значений введем краткие обозначения ( )k
jt  и ( )k

jq  соответ-

ственно. Подробная расшифровка обозначений приведена в таблице:  

Таблица 

Индекс k   0 1 2 3 4 5 6 7 8 

Узел  k
jt  ( )A

jt  ( )A
jt  ( )A

jt  ( )
1

A
jt   ( )

1
A

jt   ( )
1

A
jt   ( )

1
L

jt   ( )
1

V
jt   ( )

1
V
jt   

Степень свободы   0 1 2 0 1 2 0 1 0 

Параметр  k
jq  ( )A

jL  ( )A
jV  ( )A

jA  ( )
1

A
jL   ( )

1
A

jV   ( )
1

A
jA   ( )

1
L
jL   ( )

1
V

jV   ( )
1

V
jL   

 

В данных обозначениях будем рассматривать интерполяции с уз-
ловыми значениями 0,...,k n , где 5n   (интерполяция пятой степени 
по крайним узлам), 7n  (интерполяция седьмой степени по четырем 

узлам, не учитывающая узловое значение ( )
1

V
jL  ) и 8n   (полный слу-

чай). При 7n  узел ( )
1

V
jt   имеет степень свободы 1  , но не имеет 

степени свободы 0 , что означает неполную эрмитову интерполя-
цию [14]. Если какие-либо из узлов регистрации совпадут, появятся 
повторы в узловых значениях, которые должны быть устранены. 
Например, если ( ) ( )

1 1
L V

j jt t  , то ( ) ( )
1 1

V L
j jL L  , и число узловых значений 

должно уменьшиться на единицу вместе со степенью интерполяции.  
Далее рассматриваются некратные узлы регистрации, но приме-

няемые подходы без затруднений можно использовать в случаях 
полностью или частично совпадающих узлов. Случай ( ) ( ) ( )L V A

j j jt t t   

проще рассматривать изложенным выше методом. 
Имеется ряд способов явной записи интерполяционных полино-

мов через узловые значения [13, 14]. Удобен подход, применяемый в 
методе конечных элементов (МКЭ) [15, 16], которым воспользуемся 
в данной работе.  

Подобно локальным треугольным (тетраэдральным) координатам 
для плоских (пространственных) конечных элементов (КЭ) введем на 

КЭ ( ) ( )
1;A A

j jt t  
   линейные координаты, причем в рассматриваемом од-

номерном случае достаточно только одной из них: 

  ( ) 1.A
jjt t h   (5) 

Для имеющихся условий шаг регистрации t  является постоянным 
для всех кинематических параметров, следовательно  0,1...j N : 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 .A A L L V V

j j j jj j jh t t t t t t t          



А.В. Плюснин 

80 

Для того чтобы оставаться в пределах данных рис. 1, номер N  

должен быть выбран с учетом условия ( ) 1A
Nt T  .  

Определим значения 

        ( ) ( ) 1 ( ) ( ) 1
0 1 21 0 1 0; ; 1,L A V A

L V At t t t t t               (6) 

характеризующие взаимное расположение моментов регистрации 
различных параметров, причем из условий (3) следуют неравенства 

0 1; 0 1.L V     

Интерполяционный полином на КЭ ( ) ( )
1;A A

j jt t  
   запишем в ло-

кальных координатах: 

 ( ) ( )
1

( ) ( )

;
0

( ) .A A
j j

n
j k

kt t
k

L t a



 
   

   (7) 

Используя выражение (7), вводим обозначения для полинома 

( ) ( )
1

( )

;
( ) A A

j jt t
L t




 
  

 и его производных порядка  : 

 
 

 
( ) ( )

1

;; ; ( ) ( )

;
0

!
( ) ( )

!A A
j j

nn
jj j k k

k kt t
k k

d k
f t L t t a f

kdt






    

  
    

    
  , (8) 

        ; !
, 0,1,..

!
j j

k k

k
f t a k n

k
 




   (9)  

где n n   . 
С каждой степенью свободы каждого узла на полном отрезке 

( ) ( )
0 ;A A

Nt t 
   свяжем кусочно-полиномиальную функцию формы. При 

записи уравнений МКЭ в формулировке по методу Бубнова — Га-
леркина эти функции определены в глобальном смысле, так как они 
являются одновременно и пробными функциями. Тем не менее явные 
выражения этих функций обычно не требуются и для работы на КЭ 
их удобно нумеровать локально. В соответствии с приведенными 
выше обозначениями функции формы для степеней свободы узлов 

КЭ ( ) ( )
1;A A

j jt t  
   обозначим как  ( )k

jN t . 

Функции формы имеют своим носителем объединение КЭ, кото-
рым принадлежит соответствующий узел, во всех остальных точках 
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они тождественно равны нулю. Ограничения функций формы на КЭ 
( ) ( )

1;A A
j jt t  

   определяются как эрмитовы интерполяционные полиномы 

степени не выше n , удовлетворяющие условиям нормировки [13–16] 

    ( ) ( ) , , 0.. ,k l
k lj jN t k l n   (10) 

где k l  — символ Кронекера. Эрмитовы функции формы в отличие 

от лагранжевых могут иметь степень ниже .n  Например, кубический 

полином      2
27 32 1 1f x x x    удовлетворяет пяти условиям 

нормировки ( 1) ( 1) 0f f     ,  1 3 1f  ,  1 3 0f   , (1) 0f  . По-

добные примеры можно получить из общего выражения для эрмито-
ва полинома [13]. 

При пересечении границы КЭ первая производная от функций 
формы претерпевает разрыв (поэтому при решении уравнений второго 
порядка прибегают к слабым формулировкам). При условии своего 

существования функции формы ( ) ( )k
jN t  образуют на КЭ ( ) ( )

1;A A
j jt t  

   

базис n-мерного линейного пространства полиномов n-й степени.  
В случае полной эрмитовой интерполяции, в том числе разнопоряд-
ковой, функции формы существуют и определяются единственным 
образом [13]. Матрица, которую при этом приходится обращать, яв-
ляется обобщенной (конфлюэнтной [17]) матрицей Вандермонда. 
Неполная эрмитова интерполяция не обязательно осуществима, как, 
например, при поиске линейной функции с произвольно заданными 
значениями производной на концах отрезка. При 7n  определитель 

обобщенной матрицы Вандермонда равен  33 2 74 1L V j Lh      

   2 21 7 4 6 3V V V L V L          и обращается в нуль на линиях 

 21 7 2 3 9 9 4V L L L          открытого квадрата 0 ,L  1V  . 

При возникновении проблемы можно повысить порядок интерполяци-
онного полинома, добавляя недостающие степени свободы. Добавляя 
узловое значение ( )

1
V
jL  , получаем 8n  , и определитель матрицы Ван-

дермонда      3 6 23 6 74 1 1L V j L V V Lh       не обращается в нуль 

(рассмотрение данного определителя имеет смысл только при несов-
падающих узлах регистрации). Следует отметить, что качество интер-
поляции по заданным узловым значениям может при этом ухудшиться 
из-за появления ложных колебаний, как показывают приведенные на 
рис. 7 результаты расчетов для выборки 0,125t  , ( )

1 0,06875At  , 

0,65L  , 0,65V   (откуда ( )
1 0,025Lt  , ( )

1 0,03125Vt  ). 
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Рис. 7. Эрмитова интерполяция по узловым значениям (выборка 

0,125t  , ( )
1 0,06875At  , 0,65L  , 0,65)V   

1, 5, 8 — полные данные для A/10, L и V; 2, 6, 9 — дискретные данные для A/10, L  
и V; 3, 4 — эрмитова интерполяция для A/10 при n = 7 и n = 8; 7, 10 — эрмитова  
                                           интерполяция (n = 8) для L и V 

 
Условия (10) и линейная независимость функций формы позво-

ляют записать выражение (7) в следующем виде: 

    
1

( ) ( ) ( ) ( )

;
0 0

( ) ( )A A
j j

n n
j k k k

j jkt t
k k

L t a N t q



 
    

    . (11) 

Коэффициенты ( )j
ka  находят из соотношений 

 

   
   
   
   

; ; ( ) ( )

; ; (3 ) (3 )

; ; (6 ) (6 )

; ; (8 ) (8 )

, 0,1, 2;

, 0,1, 2;

, 0,1;

, 0,

j
j j

j
j j

j
j j

j
j j

f t q

f t q

f t q

f t q

   

   

   

   

 

 

 

 

 (12) 

образующих в развернутом виде СЛАУ с обобщенной матрицей Ван-
дермонда .C  
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Примем 1B C  и представим решение соотношений (12) в виде 

 ( ) ( )

0

.
n

j l
k l jk

l

a B q


  (13) 

В результате подстановки выражения (13) в формулу (11) по-
лучаем  

( ) ( ) ( )

0 0 0

( ) .
n n n

l k k k
l k j j j

k l k

B q N t q
  

    

Вследствие независимости параметров ( )k
jq  находим отсюда 

функции формы в локальных координатах: 

( )

0

( ) .
n

k l
l kj

l

N t B


   

Таким образом, коэффициентами функций формы при полиноми-
альном разложении в локальных координатах являются столбцы мат-
рицы .B  При 5n   матрицы C  и B  имеют соответственно вид: 

1

2

1 1 1 1 1

2 2 2 2

2

2 2

2 2

2

1 0 0 0 0 0

0 0 0 0 0

0 0 2 0 0 0

1 1 1 1 1 1

0 2 3 4 5

0 0 2 6 12 20

1 0 0 0 0 0

0 0 0 0 0

0 0 0,5 0 0 0

10 6 1,5 10 4 0,5

15 8 1,5 15 7

6 3 0,5 6 3 0,5

;

j

j

j j j j j

j j j j

j

j

j j j j

j j j j

j j j

h

h

h h h h h

h h h h

h

h

h h h h

h h h h

h h h

C

B





    

   

   

  

   

 
 
 
 
 
 
 
 
 
  



2

.

jh

 
 
 
 
 
 
 
 
 
  

 

В данном случае C  является нижней блочно-треугольной матри-
цей [11], несложно обращаемой. 
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Используя выражение (13), запишем формулу (9) в виде 

      ; ( )
,

0

!
, 0,1,.. .

!

n
j l

k l jk
l

k
f t B q k n

k
 

 



   (14) 

Теперь с учетом соотношения (3), (4) и (6) полные условия в точ-
ках регистрации примут вид  1...j N  

 

   
   
 

; 1;0

; 1;1

; 1;2

;

;

(1) .

j
L j

j
V j

j
j

f L

f V

f A

 

 

 

 

 



 (15) 

В отличие от соотношений (12) здесь искомыми величинами яв-
ляются узловые значения кусочно-полиномиальной интерполяции, а 
в правой части стоят значения зарегистрированных кинематических 
параметров. Кроме того, данная СЛАУ может оказаться недоопреде-
ленной. 

Подставляя в (15) выражения (8) и (14), получаем СЛАУ 

 ,Mx b  (16)  

составленную из 3N  уравнений относительно 9N  узловых значений: 

 ( )
3

0

, 0 1, 0,1,2,
n

l
l jj

l

H q b j N 


      (17) 

 
,

0

!
,

!

n
k

l k l
k

k
H B

k



  



   

1

3 1

2
1

, 0;

, 1;

, 2.
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j j

j

L

b V t

A t



 



 

  

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Отождествим на время регистрируемые параметры с соответ-
ствующими узловыми значениями. Тогда при 7n  и 8n   СЛАУ 

превращается в систему тождеств, а ( )A
jL , ( )A

jV  (и ( )V
jL  при 8n  ) 

остаются неопределенными. При 5n   после исключения тожде-
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ственных соотношений   ; 1;2 (1)j
jf A    будем иметь 2N  уравне-

ний относительно 2N  искомых значений ( )A
jL  и ( ) .A

jV  Однако полу-

ченная при этом СЛАУ распадается на последовательно решаемые 
подсистемы и дает тот же результат, что и пошаговый метод. Таким 
образом, для получения содержательных результатов требуются до-
полнительные математические средства. 

Выводы. В ч. 1 работы поставлена задача реконструкции пара-
метров движения ЛА в контейнере в процессе газодинамического 
выброса при их регистрации с большой дискретностью, построены 
кусочно-полиномиальные эрмитовы аппроксимации реконструируе-
мого графика пути, рассмотрены методы непосредственного решения 
результирующих СЛАУ. В случае общего расположения узлов реги-
страции эти методы оказались непригодными для решения постав-
ленной задачи. Далее в ч. 2 работы на основе кусочно-полино-
миальных аппроксимаций, разработанных в ч. 1, будут рассмотрены 
подходы, использующие вариационную формулировку задачи сов-
местно с методом регуляризации, что позволит получить практиче-
ски значимые результаты. 
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Aircraft motion parameters recovery  
from the data of their discrete registration.  

Part 1. Methods without use of regularization 

© A.V. Plyusnin 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The article examines methods of aircraft motion parameters recovery from the data of 
their low resolution recordings in the gas-dynamic ejection experimental test.  Desired 
conditions were satisfied by the use of Hermitian piecewise polynomial interpolation. 
Implementation of Tikhonov regularization provides the most flexible approach to the 
problem under consideration. 

Keywords: gas-dynamic ejection, aircraft, motion parameters recovery, piecewise poly-
nomial interpolation. 
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