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УДК 539.3 

Моделирование стационарного качения  
массивной шины по беговому барабану  
с учетом диссипации энергии в резине 

© А.Е. Белкин, В.К. Семенов   

МГТУ им. Н.Э. Баумана, Москва, 10055, Россия  

Рассмотрена задача математического моделирования испытаний по обкатке 
массивной шины на стенде с беговым барабаном, в ходе которых определены ха-
рактеристики сопротивления качению шины. Подробно изложены основные эта-
пы построения модели. Приведена формулировка контактной задачи свободного 
стационарного качения шины по испытательному барабану с учетом рассеяния 
энергии в резине при циклическом деформировании. Вязкоупругое поведение резины 
описано с помощью модели Бергстрема — Бойс, числовые параметры которой 
установлены по результатам испытаний образцов. Условия контакта в нормаль-
ном и тангенциальном направлениях сформулированы с использованием функций 
внедрения, для выполнения контактных ограничений применен метод штрафа. 
Численное решение трехмерной задачи вязкоупругости получено методом конеч-
ных элементов. Для оценки адекватности построенной модели проведено сравне-
ние результатов расчетов с данными испытаний массивной шины на стенде 
Hasbach по значениям полученных сил сопротивления качению при различных 
нагрузках на шину. Сопоставлены распределения давления в площади контакта, 
полученные расчетным путем и экспериментально с применением оборудования 
фирмы XSENSOR Technology Corporation. 

Ключевые слова: массивная шина, беговой барабан, стационарное качение, дисси-
пация энергии, сопротивление качению, математическое моделирование, вязко-
упругость, контактная задача. 

Введение. Испытания на шинообкатном стенде с беговым бара-
баном — один из наиболее информативных методов эксперимен-
тального исследования эксплуатационных характеристик и ресурса 
шин. При качении шины по беговому барабану можно определить в 
частности силы сопротивления качению, температуры саморазогре-
ва шины, т. е. характеристики, зависящие от рассеяния энергии в 
резине при циклическом деформировании. Их расчет представляет 
собой сложную задачу математического моделирования, при реше-
нии которой большое значение приобретает настройка модели на 
воспроизведение результатов испытаний. В статье рассмотрено ре-
шение задачи свободного стационарного качения массивной шины 
по беговому барабану с учетом диссипации энергии и проведена 
проверка достоверности предлагаемой модели при сравнении ее с 
результатами испытаний. 
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Обзор решений. Задача контакта качения для вязкоупругого 
толстостенного цилиндра с жестким сердечником (обрезиненного 
катка) решена методом конечных элементов (МКЭ) в трудах [1–4]. 
В работе [1] изучен контакт по нормали к поверхности барабана без 
учета контактных тангенциальных сил. В статьях [2, 3] рассмотрена 
общая формулировка условий одностороннего контакта для катяще-
гося цилиндра, учитывающая силы трения в пятне контакта. В ука-
занных статьях также были исследованы плоские деформации рези-
нового массива катка. Для резины применяли соотношение вязко-
упругости с экспоненциальным ядром релаксации, содержащим  
характерное для материала время релаксации. Более общий подход  
к описанию вязких эффектов в эластомерных материалах при цик-
лическом нагружении использован в [4], где сформулирован закон 
состояния с внутренними переменными процесса деформирования, 
определяющими изменение вязких составляющих деформаций.  
В [5–7] обсуждены вычислительные проблемы контактной задачи 
качения шины. 

Постановка задачи. Массивная шина состоит из металлического 
обода и привулканизованного к нему резинового массива. Схема к ре-
шению задачи качения шины по беговому барабану показана на рис. 1. 
Абсолютно жесткий барабан, вращающийся с постоянной угловой 
скоростью d, приводит шину в движение с угловой скоростью  . 
Параметр, задающий контакт двух тел, — сближение их осей u0. 

 

 

Рис. 1. Схема к решению задачи качения массивной шины  
по беговому барабану: 

1 — резиновый массив; 2 — металлический диск 
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Испытания показывают, что при максимальных эксплуатацион-
ных нагрузках отношение обжатия шины u0 к толщине резинового 
массива h = R0 – Ri не превышает 8 %, т. е. резина деформирована 
слабо. Данное обстоятельство позволяет решить задачу в геометри-
чески линейной постановке. 

Для формулировки уравнений будем использовать декартову си-
стему координат 1 2 3, ,x x x  с ортами 1 2 3, ,e e e

  
 (см. рис. 1) и по необ-

ходимости цилиндрические координаты 3, ,r x  с ортами 

1 2 3 3, ,i i i e
   

 соответственно радиального, окружного и осевого 

направлений.  
При стационарном качении вектор скорости произвольной точки 

шины определяем по формуле 

2
u

v r i


  



, 

где i iu u e
 

 — вектор перемещения точки, связанный с деформиро-

ванием шины (здесь и далее по повторяющемуся латинскому индексу 
идет суммирование от 1 до 3). 

Представим скорость в декартовых координатах: 

2 1 1 1 2 2 3 3( ) ( )v x u e x u e u e           
   

, 

где 1 2
2 1

x x
x x


  

   
  

 — оператор дифференцирования по уг-

ловой координате. 
Деформации i j  и напряжения i j  в любой материальной точке 

шины называют периодическими функциями времени  

 ( ) ( )i j i jt T t    ;        ( ) ( )i j i jt T t    , (1) 

причем периодом служит время оборота колеса 2 / .T     
Опишем потери энергии в резине, 

взяв за основу вязкоупругую модель 
деформирования эластомеров, предло-
женную Бергстремом и Бойс [8, 9]. По-
лучаем, что поведение вязкоупругого 
материала при одноосном напряжении 
подобно поведению условной трех-
звенной механической системы (рис. 2), 
в которой скорость вязкой деформации 

 

Рис. 2. Условная модель вязко-
упругого материала 
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звена 3 подчинена соотношению теории течения с упрочнением. Ав-
торы [8, 9] полагают, что для эластомеров в качестве параметра 
упрочнения следует принимать удлинение полимерной цепочки. 

При трехосном напряженном состоянии в случае малых дефор-
маций модель Бергстрема — Бойс имеет вид: 

 2 э v
i j i j i j i jK G S     ; (2) 

 2 (э э )v v
i j i j i jS G  ; (3) 

  chain
э

,
v
i j v v v

u i j
d

f S
dt

   ; (4)  

    
 

chain

chain 0

,
1

mv
uv v

u nv

B
f


  

   
, (5) 

где функции с верхним индексом v относят к вязкому звену; K — мо-
дуль объемного сжатия; ii    — объемная деформация; i j  — 

символ Кронекера; G, G* — равновесный и релаксационный модули 

сдвига; э i j , эv
i j  

— компоненты девиатора деформаций и их вязкие 

составляющие; 
1/2

3

2
v v v
u i j i jS S    

 
 — интенсивность напряжений в 

вязком звене; 2 2 2
chain 11 22 33

1
( ) ( ) ( )

3
v v v v        — кратность усред-

ненного вязкого удлинения макромолекулярной цепи эластомера [8]; 
m, n, B — параметры закона деформирования; 0  — малая постоян-

ная деформация, добавляемая для описания скорости ползучести при 
нулевой деформации. 

Представленная модель прошла испытания по циклическому 
сжатию образцов резины [10] и полиуретана [11].  

Положим в основу расчета катящейся шины уравнение баланса 
виртуальных работ внутренних и внешних сил. Изучая стационарное 
качение с невысокими скоростями (максимальная скорость движения 
транспортного средства 70 км/ч), пренебрежем влиянием сил инер-
ции и рассмотрим процесс как статический. Предположим, что обжа-
тие шины происходит в результате смещения бегового барабана на 
заданную величину 0u  к оси колеса. Для произвольного момента 
времени запишем уравнение баланса виртуальных работ 
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 i j i j c

V

dV W    , (6) 

где cW  — работа сил в области контакта. 

При подсчете работы cW  необходимо принимать во внимание 
условия контакта, накладывающие ограничения на возможные пере-
мещения и контактные силы. Искомую контактную нагрузку cp


, 

возникающую на части наружной поверхности c  шины, разложим 

на составляющие в осевом, окружном и нормальном по отношению к 
барабану направлениях:  

1 1 2 2c t d t d n dp p t p t p n  
  

, 

где 1 3dt e
 

, 2dt


, dn


 — единичные векторы указанных направлений. 

Сформулируем условия контакта шины с беговым барабаном. 
Уравнение пологой поверхности барабана в пределах возможной 
площади контакта запишем в виде выражения (см. рис. 1) 

2
2

1 0 0
2

d
d

d

x
x R u

R
   . 

Определим «единичные» (в приближении теории пологих по-
верхностей) векторы 

2 2 1 2( / )d dt x R e e 
  

;      1 2 2( / )d dn e x R e  
  

. 

Пространственные координаты точек наружной поверхности де-
формированной шины i ix u  должны удовлетворять условию 

непроникания внутрь барабана: 

2
2 2

1 1 0 0
( )

2 d

x u
x u R u

R


    , 

где 2
1 0 2 02x R x R   — уравнение той же поверхности в недеформи-

рованном состоянии. 
Введя функцию зазоров между контактирующими поверхностями 

22
22 2

0 1
0

( )

2 2d

xx u
g u u

R R



    , 

перепишем условие непроникания как требование неотрицательности 
зазоров: 
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0g  , 

где g g    — функция, противоположная по знаку функции зазоров, 
называемая внедрением. Она не может быть положительной в случаях: 

0g  , если точка шины находится в контакте; 

0g  , если контакт отсутствует. 
Для описания условий контакта можно использовать и функцию 

зазоров, и функцию внедрения. Далее будем применять функцию 
внедрения.  

Проведя линеаризацию функции g  по отношению к малым пе-
ремещениям точек шины, получим 

1 2 2( / )dg g u x R u     

или 

 ng g u   , (7) 

где 
2 2
2 2

0
02 2d

x x
g u

R R
     — начальное внедрение, возникающее на 

проницаемой контактной поверхности; n du n u
 

 — перемещение 
точки шины в направлении нормали к опорной поверхности. 

Итак, условия нормального (в направлении нормали) контакта 
можно сформулировать следующим образом. В искомой области 
контакта c   

 0ng u   , 0np  . (8) 

Для формулировки тангенциальных условий контакта определим 
функцию скорости проскальзывания при качении шины по барабану 

 02d d d r RR t v    
  

. 

В проекциях на оси барабана 1dt


, 2dt


 имеем 

1 3t u    ; 

2 2
2 2 2 2

2 0 1 2
0

1 1
1 1

2 2
t d d

d d d

x x x x
R R u u

R R R R
 

        
                 
           

. 

В общем случае качения шины область контакта c  делим на 

зону сцепления st
c  и зону скольжения sl

c . В зоне сцепления полное 
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касательное напряжение 2 2
1 2( ) ( )t t tp p p   меньше предельного 

напряжения, вычисленного по закону Кулона, проскальзывание от-
сутствует, т. е. верны условия 

t np p  ;      2 2
1 2( ) ( ) 0t t t      , 

где   — коэффициент трения скольжения. 
В зоне скольжения касательное напряжение имеет предельное 

значение t np p  , причем согласно закону трения Кулона, 

0t  ; 1 1( / )t n t tp p    ;  2 2( / )t n t tp p    . 

Условия 1 0t  , 2 0t  , налагаемые на скорости проскальзыва-

ния в зоне сцепления, могут быть сформулированы и в перемещени-
ях. В пределах области контакта 2 / 0,05dx R  , поэтому можно по-

лагать 2 2dt e
 

. После входа в контакт соответствующие материаль-

ные точки шины и бегового барабана проходят одинаковый путь, где 
их пространственные координаты совпадают. Представим условия 
сцепления в окружном и осевом направлениях в виде 

 2 0;tg u         3 0 3( ) 0,u u    (9) 

где введена функция начального «проникания» для окружного 
направления, аналогичная функции начального внедрения g

  

 0 0 2 0( ) ( )d
t dg R R u

       
 .  (10) 

В выражениях (9), (10) угловая координата входа в контакт, зави-
сящая от 3x , обозначена как 0 .   

При нормальных условиях испытаний шины на беговом барабане 
проскальзывание практически отсутствует. Будем считать, что во 
всей области контакта c  справедливы условия сцепления (9). 

Для решения контактной задачи используем метод штрафа, трак-
туя работу сил в контакте cW  в уравнении (6) как вариант штрафной 
функции. Для выполнения условия нормального контакта (8) устано-
вим зависимость между искомым давлением np  и функцией внедре-
ния (7) контактирующих тел: 

( )n n np k g u  , 

где nk  — коэффициент штрафа. 
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Работу давления представим в виде 

 ( )
n

c

p n n nW k g u u d


      , (11) 

где n du n u  
 

. 
Данная процедура применима при составлении выражения вир-

туальной работы тангенциальных сил в контакте. Положим, что эти 
силы пропорциональны невязкам в условиях сцепления (9), т. е. 

1 30 3( )t tp k u u  ;         2 2( )t t tp k g u  , 

где tk  — коэффициент штрафа при выполнении условий сцепления, 

30 3 0( )u u  . 

Тогда для работы тангенциальных сил получим выражение 

 2 2 30 3 3( ) ( )
t

c

p t t tW k g u u k u u u d


           . (12) 

Сумма работ (11) и (12) определяет функцию cW , т. е. правую 
часть уравнения в вариациях (6). 

Вычисление работы внутренних сил. В рассматриваемой зада-
че деформации и напряжения при удалении от зоны контакта быстро 
затухают. Ограничим область значимых напряжений и деформаций 
углами   и  , предположив, что вне этой области 0i j  , 0i j  . 

Периодичность (1) заменим условиями затухания компонент напря-
женно-деформированного состояния, возникающего при приближе-
нии к границам расчетной области: 

  0,i j     0i j     при     и при .  (13) 

Для вычисления работы внутренних сил запишем соотношения 
вязкоупругости (2)–(3) в измененной форме: 

 
2 э ;

2( ) э ,

t
e v

ij ij ij

e
ij ij ij

G dt

K G G







   

    

 
 (14) 

где e
ij  — мгновенные напряжения, определенные по соотношениям 

упругости; эv
ij  — скорости вязких деформаций, определяемые по 
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формулам (5), (6); звездочкой обозначено дифференцирование по 
времени. 

Для стационарного режима качения интегрирование по времени 
в (14) заменим интегрированием по угловой координате ,t    
причем нижний предел интегрирования  с учетом условий (13) бу-
дет    :  

 12 э .e v
ij ij ijG d




 



          (15) 

Начальные условия интегрирования считаем нулевыми: 

( ) 0,ij         ( ) 0.ij     

Выполненные преобразования позволяют записать уравнение 
принципа виртуальных работ в виде: 

 

1

2 2 30 3 3

( 2 э )

( ) ( ) ( ) ,
c

e v
ij ij ij

V

n n n t t t

G d dV

k g u u k g u u k u u u d




 






     

           

 

  

 

 (16) 

где V  — расчетная область шины, ограниченная радиальными сече-
ниями и     и    . 

При решении уравнения (16) напряжения (15) рассчитывают ите-

рационным способом, поскольку скорости вязких деформаций эv
ij  

зависят от определяемых напряжений. В каждом цикле вязкие де-
формации 

  1
chain( ) ,v v v v

ij u ijэ f S d







         (17) 

вычисляют путем численного интегрирования по методу Рунге — 
Кутты. 

В настоящей работе уравнение (16) решено методом конечных 
элементов, описанным в авторской программе В.К. Семенова. При 
этом использованы объемные восьмиузловые элементы в форме па-
раллелепипеда с трилинейной аппроксимацией перемещений.  

Выбранное представление перемещений с помощью функций 
гладкости C °  приводит к разрыву деформаций и напряжений на гра-
нице между соседними конечными элементами (КЭ). Для вычисле-
ния интеграла (17) на текущей итерации проведена аппроксимация 
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деформаций, полученных на предыдущей итерации. В качестве ил-
люстрации алгоритма на рис. 3 схематично представлена область 
шины, разбитая на КЭ.  

 

 

Рис. 3. Схема области шины,  
разбитой на конечные элементы: 

1 — ряд КЭ; 2 — гауссова точка 
 

Рассмотрим произвольный ряд элементов, выстроенных в окруж-
ном направлении, по которому проводят численное интегрирование 
скоростей деформаций. Между одноименными гауссовыми точками 
(т. е. точками с одинаковыми локальными координатами) двух смеж-

ных КЭ, в которых деформации равны 1εk
ij
 , εk

ij , вводим линейную ап-

проксимацию: 

 α 1 1ε ε α ε ε , k k k
ij ij ij ij

      α 0,1 .  

Полагая, что вязкие деформации   1
э

kv
ij


 элемента 1k   известны, 

последовательно вычисляем коэффициенты метода Рунге — Кутты: 

  11 1э э ;     ε ;  
kv v k

ij ij rs rsk
    

 
  

  12 1 0,5φ
э э ,ε ;

2ω

kv v k
ij ij rs rs rsk k

    
 

  

   13 2 0,5φ
э э ,ε ;

2ω

kv v k
ij ij rs rs rsk k

    
 

  (18) 

  14 3 φ
э э ,ε ,

ω

kv v kk
ij ij rs rs rsk k

    
 

  

где φk  — шаг интегрирования (см. рис. 3).  
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При вычислении коэффициентов (18) скорости вязких деформаций 
определяют по формулам (4), (5). Окончательно деформации вязкого 
звена в соответствующей гауссовой точке k-го КЭ вычисляют как 

     1 1 2 3 4φ
э э 2 2 k .

6ω

k kv v k
ij ij ij ij ij ijk k k

 
      

Далее после введения полученных деформаций в выражения 
(3) и (2) получаем переопределенные напряжения. Процесс инте-
грирования начинают с фиктивного (не участвующего в решении 
задачи) элемента ряда, для которого напряжения и деформации 
равны нулю.  

Таким образом, при свободном стационарном качении шины ско-
рость ее вращения ω определяют по заданной скорости вращения ба-
рабана ωd, исходя из условия отсутствия тягового или тормозного 
момента на оси шины. 

Задача контакта неподвижной шины с плоской опорной по-
верхностью. Данную задачу рассматривали в качестве тестовой для 
настройки математической модели, поскольку для неподвижной 
шины существуют обширные экспериментальные данные о пара-
метрах контакта [12]. Эксперименты проводили на массивной шине 
типоразмера 630 × 170 мм, геометрические параметры которой при-
ведены ниже:  

Размеры резинового массива шины 
 

Наружный радиус R0, мм…………………………  312,8 
Внутренний радиус R1, мм……………………….  272,8 
Ширина беговой дорожки H0, мм………………..  149 
Ширина основания резинового массива Нi, мм…  162,6 

 
В экспериментах, проведенных на оборудовании фирмы XSEN-

SOR Technology Corporation с применением сенсора IX500:256.256.16, 
были исследованы форма и размеры пятна контакта, а также рас-
пределение контактного давления при различных нагрузках на ши-
ну. Вид испытательного стенда с объектом испытаний показан на 
рис. 4.  

В расчетах статического обжатия шины поведение резины при-
нимали как упругое. Постоянные упругости считали равными G =  
= 4,3 МПа, K = 108 МПа. Отметим, что значениям G и K соответству-
ет коэффициент Пуассона 0,48. Расчетный сектор шины выделен уг-
лами / 3,    / 3.    

Для оценки влияния трения в контакте задача решена в двух ва-
риантах: при наличии и отсутствии ограничений на тангенциальные 
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перемещения точек, вошедших в 
контакт. В первом случае были 
запрещены осевые перемещения. 
Для выполнения условий контакта 
коэффициенты штрафа заданы как 
kn = kt = 2000 МПа. 

Испытания по обжатию шины 
также проведены в двух режимах: 
без смазки и со смазкой, снижа-
ющей трение в контакте. Нагру-
зочные характеристики шины, 
полученные расчетным путем и 
экспериментально, показаны на 
рис. 5. Отметим, что результаты 
расчета с условием сцепления в 
осевом направлении соответ-
ствуют данным эксперимента по 
обжатию шины на «сухую» по-
верхность. Расчеты без ограниче-
ния тангенциальных перемеще-

ний в контакте (светлые точки) приводят к некоторому занижению 
жесткости шины. 

Вывод о том, что для случая «сухой» опорной поверхности 
расчеты по схеме сцепления лучше соответствуют данным испы-
таний, подтверждает анализ распределения давления в контакте 
(рис. 6). 

 

 

Рис. 5. Нагрузочные характеристи-
ки шины:  

1, 2 — экспериментальные характери-
стики, полученные при отсутствии и при 
наличии смазки в области контакта; ● и 
○ — результаты расчетов, выполненных 
при запрещенных осевых перемещениях 
в контакте и при отсутствии тангенци-
альных сил в контакте соответственно 

 
Результаты расчетов показали, что варьирование коэффициентов 

штрафа kn, kt  
в диапазоне 20…2·105 МПа/мм практически не влияет на 

получаемые контактные силы, значения которых весьма устойчивы. 
Задача качения шины по беговому барабану. Численное ис-

следование циклического напряженно-деформированного состояния 
катящейся шины провели с использованием модели вязкоупругости 
Бергстрема — Бойс. Для определения значений параметров модели 
 

 
Рис. 4. Стенд для измерения давле-
ния в контакте шины с плоской 
       опорной поверхностью 
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Рис. 6. Эпюры изменения контактного давления 
по окружному (а) и осевому (б) направлениям в 
сечениях шины, проходящих через центр пятна  
            контакта, при нагрузке 11,5 кН:  

1, 2 — решения контактной задачи при наличии и от-
сутствии ограничений на осевые тангенциальные пере-
мещения в области контакта соответственно; 3 —  
     результаты эксперимента при отсутствии смазки  

 

короткие цилиндрические образцы резины испытывали на цикличе-
ское пульсационное сжатие на электродинамическом стенде Instron 
ElectroPuls-1000. Проанализированы циклы нагружения двух видов: 
гармонический и трапецеидальный (рис. 7) с различными частотами 
и размахами напряжения.  

Гармонический цикл нагружения выбран как наиболее простой 
для отработки методики проведения эксперимента и анализа резуль-
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татов, трапецеидальный цикл — как приближение к реальному циклу 
нагружения точек беговой поверхности шины. (Указанные на рис. 7 
фазы нагружения 1τ  отдыха 2τ  соответствуют движению точек ши-
ны под нагрузкой и без нагрузки, т. е. расположены в пределах зоны 
контакта шины с опорной поверхностью и за ее пределами.) В экспе-
риментах частоту циклов изменяли от 0,1 до 10 Гц.  

 

 
Рис. 7. Трапецеидальный цикл нагружения образца  

По результатам испытаний установлены следующие значения 
параметров вязкоупругой модели: равновесный модуль сдвига G ≈  
≈ 3,9 МПа; релаксационный модуль сдвига G* ≈ 3,2 МПа; показате-
ли степеней в законе течения (5), (6) m ≈ n ≈ 1.  

Коэффициент пропорциональности между скоростями вязких 
деформаций и напряжениями в законе (5), (6) считали зависящим от 
частоты нагружения материала, т. е. от скорости вращения шины. 
Мотивация данного решения подробно аргументирована в [10]. Кон-
кретно в расчетах ( 1)/ 0,147 МПа .mB     

Найденные значения параметров модели применили при расчете 
циклического деформирования резины. Теоретические диаграммы 
цикла сжатия резины, полученные в результате интегрирования си-
стемы уравнений (2)–(5) для случая гармонического изменения 
напряжения с частотой 10 Гц, показаны на рис. 8, а. Здесь же пред-
ставлены экспериментальные кривые. Несмотря на некоторое раз-
личие в формах расчетных и экспериментальных гистерезисных пе-
тель, их площади, т.е. удельные механические потери, практически 
совпадают. К аналогичному выводу можно прийти при сопоставле-
нии гистерезисных петель для трапецеидального пульсационного 
воздействия, полученных экспериментально и расчетным путем 
(рис. 8, б). 

Выше указаны ориентировочные значения параметров модели 
материала, они подлежат уточнению в ходе настройки математиче-
ской модели. 

Рассмотрим результаты численного моделирования контакта ка-
чения шины по барабану радиуса Rd = 1000 мм. Такой радиус имеет 
беговой барабан испытательного стенда Hasbach, на котором измеря-
ли силы сопротивления качению [12]. 
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Рис. 8. Расчетные (сплошная линия) и эксперименталь-
ные (штриховая линия) гистерезисные петли для резины: 

а — при пульсационном гармоническом нагружении с частотой 
10 Гц и размахами напряжений; б — при пульсационном тра-
пецеидальном цикле с временем нагружения 1 0,1   с и вре-

менем отдыха 1 0,6   с; 1 — 1,27 МПа, 2 — 1,91 МПа, 3 —  

                                         2,55 МПа 

Распределение нормального давления и окружных сил сцепле-
ния  в пятне контакта шины, обкатываемой по барабану со скоро-
стью 60 км/ч, показано на рис. 9. Здесь же представлена эпюра дав-
ления для неподвижной шины. 
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Рис. 9. Эпюры нормального давления pn и окруж-
ных сил сцепления pt2 в сечении, проходящем через 
центр пятна контакта, при нагрузке 11,5 кН. Поло-
жительные силы сцепления на графике направлены 
    в сторону окружных скоростей точек шины  

По сравнению с решением для неподвижной шины при качении 
происходит смещение максимального давления в сторону входа в 
контакт. Окружные силы сцепления на входе и выходе из контакта 
имеют значения, соизмеримые с нормальным давлением, что говорит 
о возможности скольжения в зонах контакта. Учет зон скольжения 
при расчете может повлиять на распределение сил трения и, как 
следствие, на значение вычисляемой силы сопротивления качению. 
Однако при пересмотре решения силы нормального давления, опре-
деляющие напряженное состояние шины, существенно не изменяют-
ся. Поэтому силу сопротивления качению RF  целесообразно выра-

зить через мощность рассеиваемой в резине энергии: 

.
i j i j

V
R

d d

dV

F
R

 




 
 

С целью изучения зависимости силы сопротивления качению от 
скорости и нагрузки авторами настоящей работы проведены испыта-
ния шины на барабанном стенде. Шину обкатывали по барабану в 
режиме свободного качения. Графики изменения силы сопротивле-
ния от скорости при различных силах прижатия шины к барабану по-
казаны на рис. 10.  

При повышении скорости от 30 до 70 км/ч силы сопротивления 
увеличиваются не более чем на 10 %. Полученный результат вполне 
соотносим с экспериментальными данными для образцов резины, ги-
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стерезисные потери в которых практически не зависят от частоты 
нагружения. Это обстоятельство позволяет сократить число прово-
димых испытаний шины, поскольку можно принять, что в рассмот-
ренном диапазоне скоростей сила сопротивления не зависит от ско-
рости качения. Результаты измерений можно усреднить по скоростям 
и построить график зависимости силы сопротивления качению от 
усилия прижатия шины к барабану. Зависимость, соответствующая 
«холодному» состоянию шины, представлена на рис. 11.  

 

 
Рис. 10. Зависимость силы сопротивления качению «хо-
лодной» шины от скорости качения при разных силах 
прижатия к барабану. Точками показаны эксперимен-
тальные результаты, осредненные по числу измерений 
 

 
Рис. 11. Теоретическая (1) и экспериментальная (2) 
зависимости силы сопротивления качению «холод-
ной» шины от силы прижатия к барабану. Точками 
показаны вычисленные (●) и экспериментально  
измеренные (○) значения, осредненные по скоростям 

На рис. 11 видно, что экспериментальные результаты лежат на 
одной прямой (линия 2). На этом же рисунке показаны результаты 
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математического моделирования (линия 1). Поэтому делаем вывод о 
том, что расчетные и экспериментальные результаты качественно со-
ответствуют друг другу.   

Заключение. Полученные результаты по сопротивлению качению 
свидетельствуют о качественной достоверности расчета диссипации 
энергии в массивной шине с применением модели Бергстрема — Бойс 
для описания вязкоупругих циклических деформаций резины. Данная 
модель может быть положена в основу оценки мощности теплообразо-
вания в резине массивных шин при анализе их саморазогрева. 
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Mathematical modeling of massive tire stationary rolling  
on the chassis dynamometer with regard  

to energy dissipation in rubber 

A.E. Belkin, V.K. Semyonov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The article examines the problem of mathematical modeling tests of massive tire bench 
run with the chassis dynamometer. Conducted tests enable to define the characteristics of 
resistance to the tire rolling. The article contains the main stages of model building. We 
give a formulation for the contact problem of tire stationary free rolling on the test drum 
considering the energy dissipation in the rubber during cyclic deformation. We also de-
scribe a rubber viscoelastic behavior by the model Bergstrom – Boyce and ascertain its 
numerical parameters according to the samples tests results. The contact conditions for 
normal and tangential directions are formulated on basis of the penetration function. For 
the contact restrictions implementation we use the penalty method and obtain the numer-
ical solution of the three-dimensional viscoelasticity problem by the finite element meth-
od. To estimate the adequacy of the built model, we compare the calculation results with 
the test data received for massive tire on Hasbach test equipment. For this purpose roll-
ing resistance forces under different loads were collated. The pressure distribution in the 
contact area obtained from calculations and experiments by using  XSENSOR Technolo-
gy Corporation equipment are also juxtaposed. 

Keywords: massive tire, test drum, stationary rolling, energy dissipation, rolling re-
sistance, mathematical modeling, viscoelastic, contact problem. 
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