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Предложен алгоритм расчета напряженно-деформированного состояния абсо-
лютно гибких стержней, взаимодействующих с внешним потоком воздуха. Этот 
алгоритм основан на замене континуальной механической системы дискретным 
набором прямолинейных конечных элементов и сосредоточенных масс. Дифферен-
циальные уравнения движения масс, записанные с учетом аэродинамических 
нагрузок и диссипативных сил, проинтегрированы численным методом, что позво-
лило найти как положение равновесия гибкого стержня в потоке, так и критиче-
скую скорость потока, при превышении которой начинаются интенсивные вибра-
ции стержня. 

Ключевые слова: абсолютно гибкий стержень, аэродинамическая нагрузка, ко-
нечный элемент, численное интегрирование, динамическая неустойчивость, авто-
колебания. 

Введение. При проектировании и расчете электропередач, канат-
ных дорог, гибких трубопроводов и других конструкций, содержащих 
провода или тросы, возникает проблема взаимодействия абсолютно 
гибкого стержня с внешним потоком жидкости или газа (далее — «по-
током»). Поведение таких конструкций в случае нерастяжимых 
стержней описывает нелинейная система дифференциальных уравне-
ний в частных производных [1]: 
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где  — плотность материала стержня; A — площадь поперечного 
сечения; r — радиус-вектор оси стержня; q — распределенная 
нагрузка со стороны потока и другие виды нагрузок; t — время; s — 
осевая координата.  

При учете изгибных и крутильных жесткостей возникает необхо-
димость рассмотреть повороты сечений стержня [2, 3]. Аналитиче-
ское решение таких уравнений возможно только в специальных слу-
чаях. В связи с этим в данной работе предлагаем отказаться от кон-
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тинуальной модели в пользу дискретного представления, что позво-
лит перейти от системы дифференциальных уравнений в частных 
производных к системе обыкновенных дифференциальных уравне-
ний (СОДУ), для которых применимы явные методы численного ин-
тегрирования.  

При проектировании конструкций, взаимодействующих с внеш-
ним потоком, как правило, рассматривают следующие основные за-
дачи [4–10]:  

1) определение равновесной формы гибкого стержня в стацио-
нарном потоке; 

2) исследование динамической устойчивости конструкции в потоке; 
3) определение спектра собственных частот для отстройки от ре-

зонансных режимов при возможном кинематическом или силовом 
возбуждении. 

Прямое численное интегрирование СОДУ позволяет относитель-
но просто решать первую и вторую задачи: находить равновесную 
форму гибкого стержня в стационарном потоке и определять крити-
ческую скорость потока, т. е. скорость, при превышении которой 
возникают интенсивные колебания стержня. 

Описание алгоритма. Для перехода к СОДУ стержень необхо-
димо разбить на прямолинейные конечные элементы (КЭ), соединен-
ные шарнирно в узлах конструкции. Участки стержня будем считать 
линейно-упругими и невесомыми, а их массы — сосредоточенными  
в узловых точках (рис. 1).  

 

 
Рис. 1. Дискретная модель абсолютно гибкого стержня  

(цифрами показаны узловые точки) 

Применение более сложных, чем закон Гука, соотношений между 
напряжениями и деформациями не вносит никаких принципиальных 
изменений в алгоритм, что будет показано ниже при решении задачи 
определения критической скорости потока. 

Предлагаемый алгоритм применим к различным стержневым кон-
струкциям, таким как фермы, тросы, шланги, некоторые рычажные 
механизмы и т. п., при этом неважно, какова данная механическая си-
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стема — изменяемая или неизменяемая, статистически определимая 
или неопределимая. Достаточно, чтобы расчетную схему объекта 
можно было свести к набору невесомых стержней с сосредоточенны-
ми массами в узлах. Аналогичные модели рассмотрены в [11]. 

Рассматриваемый КЭ учитывает как упругие, так и инерционные 
свойства участка стержня (рис. 2). 

 

 
Рис. 2. Конечный элемент абсолютного гибкого стержня 

Продольную силу в КЭ определяем в соответствии с законом Гука: 
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где E — модуль упругости материала стержня; A — площадь попе-
речного сечения элемента; l0, l — длина КЭ в исходном и деформи-
рованном состоянии соответственно. 

Деформации, согласно формуле (1), считают малыми, однако пе-
ремещения узлов при этом могут быть сколь угодно большими. Рав-
номерно распределенную вдоль участка стержня массу заменяем со-
средоточенными массами ma, mb в узлах КЭ (см. рис. 2) [12]:  
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Векторные уравнения движе-
ния составляем на основании вто-
рого закона Ньютона, согласно 
схеме нагрузок, действующих на 
узел КЭ-модели (рис. 3)
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где j — номер узла КЭ-модели;  
mj — узловая масса, состоящая из 
сумм узловых масс соседних КЭ; 

 
Рис. 3. Усилия, действующие  

на узел КЭ-модели 
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jr  — радиус-вектор узла j,  т, , ;j x y zr  1,  j jN N  — силы, действу-

ющие со стороны КЭ с номерами j и ( )jr j – 1, сходящихся в j-й узло-

вой точке; jP  — вектор внешних сил, действующих на j-ю узловую 

точку; jm g  — сила тяжести, действующая на j-ю узловую массу. 

Уравнения вида (3) были записаны для всех подвижных узлов 
КЭ-модели и дополнены начальными условиями. Таким образом, 
расчет стержня оказался сведенным к решению задачи Коши для си-
стемы обыкновенных дифференциальных уравнений (4) (см. ниже) 
относительно векторов ( ):j tr  
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где t0 — начальный момент времени; n — количество КЭ в модели. 
Векторы ( ),j tr  определяющие положение узловых точек в про-

странстве, и будут решением системы (4) с учетом граничных усло-
вий 1 1 0( ) ( ),t tr r 1 1 0( ) ( ).n nt t r r  

Определение текущих усилий в стержнях. В уравнения (4) 
входят текущие усилия в стержнях, которые, согласно (1), связаны с 
изменением длины КЭ и, следовательно, с узловыми перемещениями. 
Поскольку в данной постановке текущие усилия в стержнях — век-
торные величины, а в качестве неизвестных приняты радиусы-
векторы узловых точек, то целесообразно определить направляющий 
орт для каждого элемента и представить изменение длины стержня 
через соответствующие радиусы-векторы.  

Изменение длины элемента с номером j зависит от положения уз-
лов в момент времени t (рис. 4) и исходной длины стержня: 

 0 0;Δl l l r l      (5) 

 1 .j j  r r r
 

(6) 

Тогда усилие в j-м стержне определяем в соответствии с (1) и (5): 
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где e — направляющий орт j-го элемента.  

 
Рис. 4. Положение узлов КЭ и усилия в стержнях 

в деформированном состоянии 

Учет ветровой нагрузки. В задаче о колебаниях и динамической 
устойчивости электрического кабеля в потоке воздуха (рис. 5) мате-
матическая модель должна содержать адекватное описание ветровых 
нагрузок. 

 
Рис. 5. Электрический кабель в потоке воздуха 

Для получения аналитических выражений аэродинамических сил, 
действующих на стержень, движущийся в потоке, как правило, при-
меняют экспериментально-теоретический метод, при этом полагают, 
что аэродинамические силы зависят от относительной скорости [2, 
13]:  

 от ,v v
t


 


u

 (9) 

где v — скорость потока; u — вектор перемещений точки осевой ли-
нии стержня. 
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В [2] получены следующие аналитические выражения для рас-
пределенных аэродинамических нагрузок: 
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где 1q , nq  — векторы касательной и нормальной распределенной 
нагрузки; c1, cn — аэродинамические коэффициенты, определяемые 
экспериментально; ρ0 — плотность обтекающей среды; d — харак-
терный размер сечения; v1 от, vn от — касательная и нормальная состав-
ляющие относительной скорости. 

В общем случае могут присутствовать и другие распределенные 
нагрузки, например сила Кармана [14], волновое сопротивление [15], 
которые в данной работе не приведены, так как рассматривается без-
отрывное обтекание однородным потоком.  

Поскольку континуальная механическая система заменена дис-
кретной моделью, распределенная аэродинамическая нагрузка также 
приведена к узловым точкам. В связи с этим сделано допущение, что 
аэродинамическая нагрузка распределена равномерно вдоль элемента 
(рис. 6) и ее величина пропорциональна квадрату средней по элемен-
ту относительной скорости: 

 1
 от ,

2
j j

j
v v

v v 
   (11) 

где vj, vj + 1 — скорости узловых точек. 

 
Рис. 6. Замена распределенной аэродинамической 
нагрузки сосредоточенными узловыми силами 

Данное предположение тем точнее, чем меньше длина КЭ. Узло-
вую нагрузку, приложенную в j-м и ( j + 1)-м узлах, от распределен-
ных аэродинамических нагрузок, действующих на j-й элемент, опре-
деляем следующим образом:  
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где e, n — орты, указывающие направления 1q  и n .q  Орт e для каса-
тельной нагрузки определен соотношением (8). Орт n для нормаль-
ной нагрузки обусловлен исключением из полной скорости касатель-
ной составляющей: 
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  от от  1 от

.j jj n
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Узловые аэродинамические нагрузки от соседних элементов 
суммируем в узлах, соединяющих элементы. 

По описанному методу был решен ряд задач, в том числе не-
сколько тестовых. Алгоритм разработан при использовании компью-
терного пакета Wolfram Mathematica 9.0.1 [16]. 

Расчет формы равновесия троса. Очевидно, что метод моделиро-
вания движения должен правильно определять и положение равновесия. 
Тестовая задача о равновесии растяжимого троса рассмотрена в [11].  

Концы троса закреплены на опорах на одном уровне. Пролет со-
ставляет 1000 м, длина недеформированного троса равна пролету, 
что характерно для реальных тросовых систем, EA = 1,310 · 107 Н — 
жесткость сечения на растяжение, ρA = 1 кг/м — распределенная 
масса. Материал троса линейно-упругий. 

 Количество элементов принято равным 200. Тогда общее число 
узлов составит 201, число подвижных узлов — 199. Трос отпускали 
из горизонтального положения без начальной скорости. Для получе-
ния равновесной формы троса методом установления в систему 
уравнений были включены силы сопротивления, пропорциональные 
массам и скоростям отдельных узловых точек. Внешнее демпфиро-
вание, возникающее при отпускании троса, приводило к затухающим 
колебаниям, после которых трос достигал положения равновесия.  

Для сопоставления в таблице приведены результаты вычисления 
по предложенному алгоритму и решения, полученного в [11].  

Результаты решения тестовой задачи двумя способами 

Полученные результаты 
Способ решения 

Погрешность, % 
[11, с. 91] 

Предложенный  
алгоритм 

Растягивающее усилие  
в тросе на опоре, Н 

37 670 37 657 0,03 

Растягивающее усилие  
в середине пролета, Н 

37 347 37 339 0,021 

Стрела в середине пролета, м 32,7800 32,7814 0,004 
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Из таблицы следует, что вычисления, полученные с помощью ал-
горитма, практически полностью совпадают с результатами, приве-
денными в [11]. 

Определение критической скорости потока. Исследовали дви-
жение гибкого стержня (кабеля), нагруженного собственным весом и 
обдуваемого потоком воздуха (см. рис. 5). При некоторой скорости 
потока могут возникнуть интенсивные вибрации, приводящие к об-
рыву кабеля.  

С практической точки зрения интерес представляет скорость по-
тока, при превышении которой неподвижное положение кабеля  
в потоке становится динамически неустойчивым, соответственно, 
возникают интенсивные вибрации. Анализ решений, полученных 
при прямом численном моделировании, позволяет определить ско-
рость потока.  

Рассмотрим кабель круглого поперечного сечения диаметром  
d = 0,1 м, для которого c1 и cn — константы (стоит отметить, что в 
действительности это справедливо лишь в некотором диапазоне чи-
сел Рейнольдса). В соответствии с [17] принимаем cn = 1,2, c1 = 0,2.  

Материал кабеля вязкоупругий, уравнение состояния КЭ: 

 
0

Δ
Δ η ,

EA d l
N l

l d t

 
  

 
  (14) 

  1 ,j j
d l

d t



 e v v  (15) 

где E = 63 · 108 Па; η = 10–4 c — коэффициент внутреннего трения по 
гипотезе Фойгта; ρ — плотность материала кабеля, ρ = 800 кг/м3.  

Поток ветра принимали произвольно направленным:  

   ,x y zv v vv C  i j k  (15) 

где С — безразмерный численный множитель, моделирующий увели-
чение скорости потока при сохранении его направления; vx, vy, vz — 
проекции вектора v на координатные оси.  

Расчет проводили при следующих значениях проекций скорости: 
vx = 40 м/с, vy = 50 м/с, vz = 50 м/с. Плотность обтекающей среды ρ0 =  
= 1,3 кг/м3. 

Концы кабеля неподвижно закреплены на опорах на одном уровне. 
Длина пролета 10 м, длина недеформированного кабеля 24,2 м. Коли-
чество элементов принято n = 40, тогда общее число узлов равно 41, 
число подвижных узлов — 39.  
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Рассматривали временной интервал 0…60 с. Моделирование 
проводили в два этапа. На первом этапе методом установления 
определяли статическое положение равновесия кабеля. На втором 
рассматривали изменение формы кабеля в случае приложения вет-
ровой нагрузки. 

Разделение на этапы условно, поскольку численное интегрирование 
проходило непрерывно, а «включение» ветровой нагрузки при t = 3,0 с 
обеспечивала функция Хевисайда.  

Положения кабеля в плоскости XY и XZ в моменты времени t =  
= 2,0; 3,2; 4,4; 58,8; 59,4; 60,0 c показаны на рис. 7. 

 

 
Рис. 7. Положение кабеля под действием ветровой нагрузки  
в плоскости XY (вверху) и XZ (внизу) при С = 0,41:  

1 — t = 60,0 с; 2 — t = 59,4 с; 3 — t = 4,4 с; 4 — t = 3,2 с; 5 — t = 2,0 с; 6 — t = 58,8 с 

Далее модуль скорости ветрового потока с сохранением направ-
ления увеличили и определили значение С = С*, при котором возни-
кали интенсивные вибрации.  
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Как было отмечено выше, аэродинамические коэффициенты счи-
тали постоянными на всем диапазоне изменения скоростей. На прак-
тике это не так, и указанные коэффициенты описывают сложными 
зависимостями, которые оределяют экспериментально. При необхо-
димости учет зависимостей аэродинамических коэффициентов от 
скорости потока может быть выполнен в рамках рассматриваемого 
подхода, так как он не вносит существенных изменений в работу 
предлагаемого алгоритма. 

Положения кабеля при С* = 0,42 в моменты времени t = 58,8; 
59,4; 60,0 c, для которых при C = 0,41 конфигурация кабеля была од-
ной и той же, показаны на рис. 8.  

Графики наглядно показывают, что при значении С = С*, которое 
соответствует скорости потока |v*| = 34,1 м/с, в системе возникают 
 

 
Рис. 8. Положение кабеля под действием ветровой нагрузки 

в плоскости XY (вверху) и XZ (внизу) при С = С*:  

1 — t = 59,4 с; 2 — t = 58,8 с; 3 — t = 60,0 с 



Численное моделирование движения абсолютно гибкого стержня в потоке воздуха 

13 

автоколебания. Такое значение скорости можно принять в качестве 
критического при заданном направлении ветра.  

Заключение. В рамках работы был реализован алгоритм, позво-
ляющий моделировать динамику гибких пространственных стержне-
вых конструкций. Суть подхода — в составлении уравнений движе-
ния для отдельных узловых точек системы после замены контину-
альной модели на дискретную. К основным преимуществам такого 
подхода можно отнести: использование обыкновенных дифференци-
альных уравнений вместо дифференциальных уравнений в частных 
производных; простоту учета геометрической и физической нели-
нейности; простоту анализа влияния различных параметров на пове-
дение системы. 
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Numerical simulation of absolutely flexible bAR motion  
in the air flow 

©F.D. Sorokin, F.R. Nizametdinov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The article offers the calculation algorithm of deflected mode of an absolutely flexible 
bar interacting with the external air flow. The algorithm is based on the replacement of 
the continual mechanical system by the discrete set of rectilinear finite elements and con-
centrated masses. The authors show differential equations of mass motion with allowance 
for an aerodynamic load and dissipative forces and integrate them by numerical method. 
That made it possible to find both the equilibrium position of the flexible bar in the flow, 
and the critical flow velocity which causes violent bar vibrations in case of its excess. 

Keywords: absolutely flexible bar, aerodynamic load, finite element,  numerical integra-
tion, dynamic instability, autooscillation. 
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