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Проведено исследование процессов формирования и эволюции стационарных и 
движущихся бризеров двумерной О(3) нелинейной сигма-модели. Определен анали-
тический вид пробных функций двумерного уравнения синус-Гордона, которые эво-
люционируют к периодическим во времени (бризерным) решениям. На основе 
найденных решений добавлением вращений вектору А3-поля в изотопическом про-
странстве S2 получены решения для О(3) нелинейной сигма-модели. Выполнено 
численное исследование динамики полученных решений, показана их стабильность 
в стационарном и движущемся состояниях в течение достаточно долгого време-
ни, хотя и при наличии слабого излучения. 
 
Ключевые слова: двумерный бризер, нелинейная сигма-модель, уравнение синус-
Гордона, усредненный лагранжиан, изотопическое пространство, численное моде-
лирование. 

 
Введение. Самолокализованные в пространстве и периодические 

во времени решения бризерного типа нелинейных теоретико-полевых 
моделей, состоящих из двух противофазных солитонов, привлекают 
внимание многих исследователей [1–9]. Процессы формирования про-
странственно-однородных колебательных мод, которые можно интер-
претировать как классические модели составных частиц (например, 
поле мезонов), представляют особый интерес в солитонной теории. 
Определение условий, приводящих к формированию устойчивых час- 
тицеподобных возбуждений, — один из ключевых вопросов нелиней-
ных теоретико-полевых моделей, допускающих локализованные (со-
литонные) решения. Особый класс практических задач в солитонной 
теории представляет поиск осциллирующих решений, когерентных 
структур, обладающих собственной динамикой внутренней степени 
свободы, — бионов, бризеров, дублетов, пульсонов и т. д. 

Рассмотрим метод решения этой задачи, предложенный в работе [1], 
где исследованы процессы формирования и эволюции бризерных 
решений двумерного уравнения синус-Гордона (С–Г): 

sin 0,   tt xx yyu u u u                                    (1) 

в лагранжевом и гамильтоновом подходах. В частности, на основе 
пробной функции вида 
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       
2

, , 4arctg sin sech sech ,
1

u x y t x y
 

     
  

          (2) 

  ,   t   t    

авторами работы [1] в гамильтоновом подходе были получены чис-
ленные и асимптотические решения уравнения (1) в виде устойчивых 
стационарных и движущихся бризерных солитонов. 

В настоящей работе продолжены исследования, проведенные ав-
торами работы [1] в лагранжевом подходе. В частности, усреднением 
лагранжиана 

 2 2 21
1 cos

2
    t x yL u u u u                             (3) 

уравнения (1) относительно быстрой фазы   t  и решением инте-

грального уравнения вида 
2π

0

1

2π
Ld L                                            (4) 

получены выражения для фазовых переменных   t  и   t  пробного 

решения (2), которые приведены во второй части работы. На основе 
найденных решений уравнения С–Г (1) добавлением специально по-
добранных возмущений вектору А3-поля изотопического пространства 
S2 [9–12] получены решения двумерной О(3) нелинейной сигма-модели 
(НСМ). Заметим, что в работе [1] интегральное уравнение (4) решено 
асимптотическими методами, а результаты, полученные таким образом 
в лагранжевом подходе, не приведены.  

В третьей и четвертой частях настоящей статьи представлены ре-
зультаты численного моделирования [13, 14] найденных бризеров 
уравнения (1) (в качестве тестовых задач) и двумерной О(3) НСМ в 
стационарном и движущемся состояниях. Полученные в рамках О(3) 
НСМ устойчивые периодические решения, названные в этой статье 
бризерами, при эволюции освобождаются от лишней энергии в виде 
радиально-симметричных линейных волн возмущений, поглощаемых 
на краях области моделирования специально разработанными гра-
ничными условиями [9–12, 15, 16]. В последней части работы приве-
дены свойства полученных результатов и возможные способы их 
применения для исследования других задач. 

Теоретические расчеты. В настоящей работе усредненная плот-
ность лагранжиана (3) получена в следующем виде: 

     2 2Ξ Ω Θ ,t t       L                                  (5) 
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где  
 3/22

2
Ξ ;

1
 


  ;   t   

2

2

4
Ω ;

1


 


  ;   t   Θ    

 48
arth 32.  


 

Заметим, что динамику пробной функции (2) можно описать ис-
следованием свойств фазовых параметров [1]   t  и   ,t  которые 

в рассматриваемом случае определены [17] из уравнений: 

   2 0,      tt tf g                                (6) 

 
2

2

2
0,

1

 
    

  
tt t t                                 (7) 

где 

   2

3
;

2 1


 


f  

        
2

2 2 2
2

12 1
2 1 arcth .


        

tg  

Напомним, что уравнения Эйлера — Лагранжа двумерной О(3) 
НСМ для анизотропного случая [10–12, 15, 16] есть  

 2 sin 2 1 0, 
                                  (8) 

2cos sin 0, 
         

где 0,1, 2;    , , ,x y t   , ,x y t  — эйлеровы углы, связанные 

с изоспиновыми параметрами модели (8) следующим образом: 

1 sin cos ,  s  2 sin sin ,  s  3 cos , s  1,i is s  1, 2, 3.i  

Отметим, что уравнения (8) в специальной параметризации 2  
меридианного сечения  0 , , constx y t   изотопического простран-

ства сферы S2 (рис. 1, a) сводятся [9–12] к уравнению (1) вида: 

2 sin 2 .                                              (9) 

Таким образом, в качестве начального приближения можно ис-
пользовать выражение для пробной функции (2) уравнения С–Г (1) и, 
соответственно, вводя в него некоторое специальным образом подо-
бранное возмущение (рис. 1, б): 

   c 0, , , , ,x y t x y t     0,0,   
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путем решения задачи Коши получить новые численные решения 
О(3) НСМ (8) [9–12]. 

 

Рис. 1. Динамика изотопического спина  1 2 3, ,S s s s  в пространстве сферы 2:S  

а — в меридианном сечении c const   (поле уравнения С–Г в рамках НСМ); 

б — с наличием вращения 0 2
v

     (поле НСМ) 

 

Для полевых функций is   1, 2, 3i  имеем 

1 2

2
cos ,

1
s


  

 
 2 2

2
sin ,

1


  

 
s  

2

3 2

1
,

1




 
s                 (10) 

   
   2

sin
, ,  .

cosh cosh1
x y t

x y


 

  
 

Для численной схемы применен алгоритм, разработанный в тру-
дах [9, 15, 16], где использованы свойства стереографической проек-
ции (рис. 2): точки верхней полусферы ( 3 0s ) проецируются на ка-
сательную комплексную плоскость, проходящую через «северный 
полюс», точки нижней полусферы  3 0s  — на касательную плос-

кость, проходящую через «южный полюс» блоховской сферы S2. 
В точках «экватора»  3 0s  специальным образом производится 

«прошивка» решения, и, таким образом, выполняется взаимно одно-
значная проекция (компактификация 2 2

comp )S R  всех точек ком-

плексной плоскости z  (включая  , ) x y  

1 2

3

tg e
1 2

is is
z x iy

s
 

   


                               (11) 

и сферы 2:S  

1,i is s  1, 2, 3.i  
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Рис. 2. Алгоритм применения свойств стереографической проекции 
 
Составлены трехслойные явные разностные схемы [9–16] с по-

грешностью аппроксимации второго порядка точности по времени 

и координате  2 2 O h  [13, 14]. С учетом воздействия граничных 

поглощающих условий интеграл энергии полученных моделей со-
хранялся с хорошей точностью lossEn 5,15 %  в пределах 45 000 

итерационных циклов   0,0,  270,0 .t  Получены хорошие согласо-

вания между численными и аналитическими расчетами. 
Стационарные бризеры. На первом этапе в качестве тестовых 

моделей получены устойчивые стационарные численные бризеры (10) 
уравнения С–Г (9) (в рамках модели (8) при 0, 0),   которые, изна-
чально не являясь радиально-симметричными, эволюционировали 
к радиально-симметричному виду. Данное свойство подробно иссле-
довано в работе [1]. Однако в отличие от результатов работы [1] 
в этой статье процесс перехода бризерного решения к радиально-
симметричной форме происходит периодически (рис. 3). 

На рис. 3, а приведен процесс эволюции бризерного решения (10) 
модели (9), в котором изначально квадратичная контурная структура 
бризера плавно принимает радиально-симметричную форму. В дан-
ном случае приведена эволюция плотности энергии DH  бризерного 
поля при  0,0, 13,2 .t  Плотность энергии DH  определена на основе 

гамильтониана двумерной О(3) НСМ (в изоспиновой параметриза-
ции, Ip) [10–12, 15, 16]: 

       2 2 2 2
0 1 2 3

1
1 ,

2Ip a a as s s s        
 

H  

1,a as s  1, 2, 3.a  



Ф.Ш. Шокиров 

8 

 

Рис. 3. Эволюция плотности энергии DH бризерных решений (10) модели (8) (урав-

нения (9) при 0,0),    0,0, 1 3,2t   (а). Значения  DH 0,0, t  получены чис-

ленным  моделированием  (б)  и  аналитически  (в).  Общее  время  моделирования  

 0,0,  270,0t   

 
Как было отмечено выше, в рассматриваемом случае процесс пе-

рехода бризерного решения (10) к радиально-симметричной форме 
имеет периодический характер. Обратим внимание на изменения 
значений плотности энергии DH  центральной части бризера (точ- 
ка 0 0), ,x y  полученные в результате численного моделирования 

(рис. 3, б) и аналитических методов (рис. 3, в). В случае, приведен- 
ном на рис. 3, динамику центральной точки плотности энергии бризер-
ного поля  0 0DH , ,x y t  в течение всего времени моделирования 

  0,0, 270,0t  можно условно подразделить на периодически по-

вторяющиеся волновые пакеты (в данном случае наблюдаются семь 

условных пакетов волн разной продолжительности  30,0,  45,0 .t  

В каждом волновом пакете бризерное решение (10), изначально не 
являясь радиально-симметричным (рис. 3, а), эволюционирует к ра-
диально-симметричному виду, но в конце каждого пакета снова теря-
ет данное свойство [17].  

Для тестовых моделей (см. рис. 3) добавлением вращения вектору 

А3-поля (в нашем случае 0,5)   в изотопическом пространстве 2S  
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получены устойчивые бризеры двумерной О(3) НСМ (8). На рис. 4 да-
ны иллюстрации эволюции плотности энергии DH  численных бризе-
ров (10) О(3) НСМ (8) при 0,5.   

 

Рис. 4. Эволюция плотности энергии DH бризерных решений (10) модели (8) при 

0,5,    0,0, 21,6t   (а). Значения  DH 0,0, ,t  полученные численным модели- 

рованием (б) и аналитически (в). Общее время моделирования —  0,0,  270,0t   

 
Графики на рис. 4, б, в показывают, что в течение всего времени 

моделирования   0,0,  270,0t  значения амплитуды центральной 

точки бризерного поля можно условно подразделить на периодически 
повторяющиеся волновые пакеты (в данном случае наблюдаются три 

условных пакета волн разной продолжительности  60,0, 120,0 .t  

В каждом волновом пакете бризерное решение (10), изначально не яв-
ляясь радиально-симметричным, эволюционирует к радиально-симмет-
ричному виду (рис. 4, а), но в конце каждого пакета снова теряет данное 
свойство [17]. 

Заметим, что плотности энергии DH  центральной части бризе- 
ров (10) О(3) НСМ (8) при наличии вращения вектора А3-поля 

0,0   max(DH 2,3291  в случае 0,5)   значительно меньше отно-

сительно случая 0,0    maxDH 5,5539 .  При этом бризеры (10) 

О(3) НСМ (8)  0,0   обладают большей энергией En  относитель-
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но бризеров уравнения С–Г (9) (в рамках О(3) ВНСМ при 0,0).   
Бризерное поле (10) уравнения С–Г (9) по отношению к О(3) НСМ 
(8) при 0,0t  обладает более сильным градиентом в центральной 
части, а также большими значениями амплитуды осциллирующей 
динамики центральной точки (см. рис. 3, a). Тем не менее численные 
и аналитические расчеты показывают, что бризерное поле (10) в слу-
чае 0,0   (бризеры О(3) НСМ) действует в более широком гради-
ентном поле и обладает относительно большими значениями интегра-
ла энергии En  [17]. Более того, наличие вращения изотопического 

спина  1 2 3, ,S s s s  в пространстве сферы 2S  (в данном случае 0,5)   

привело к определенному увеличению устойчивости бризеров (10) 
О(3) НСМ. При численном моделировании в течение 45 000 итераци-

онных циклов   0,0,  270,0t  общая потеря энергии lossEn  бризеров 

(10) О(3) НСМ составила: 

 lossEn 0,5 4,823 %,    

что примерно на 6 % меньше аналогичных потерь бризеров уравне-
ния С–Г (рис. 5): 

 lossEn 0,0 5,109 %.    

 

Рис. 5. Потеря энергии lossEn  бризеров (10) модели (8) 

для случаев: 
 — Enloss ( 0,0)    5,1 %;  — Enloss ( 0,5)    4,82 %. 

Время моделирования  0,0, 270,0t   

 
Движущиеся бризеры. Свойства Лоренц-инвариантности О(3) 

НСМ позволяют получить также модели движущихся решений. 
На рис. 6 приведены состояние плотности энергии DH  бризера (10) 
двумерной О(3) НСМ (8) для случаев 0,0   (a) и 0,5   (б) при за-

данной преобразованием Лоренца начальной (при 0 0,0)t   скорости 
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0
0,7071.tv  Как видно на рис. 6, a, движущийся бризер сохраняет 

устойчивость, потеря энергии на излучение при 45,0t   составляет 

lossEn 3,3731%  и lossEn 3,5401%  для случаев 0,0   и 0,5   

соответственно. 
Отметим еще раз, что в наших моделях на краях области модели-

рования (в данном случае  3001 3001 )mL  вставлены специальные 

граничные условия, которые поглощают излучаемую осциллирую-
щим солитоном лишнюю энергию в виде линейных волн возмуще-
ний. Как и в стационарном случае, контурные проекции плотности 
энергии DH  моделей эволюции движущихся решений (10) показы-
вают, что в случае 0,5   бризеры обладают более широким нену-
левым градиентным полем (рис. 6).  

 

Рис. 6. Эволюция плотности энергии DH, движущегося бризера (10) О(3) НСМ (8): 

а — при  0,0, 45,0 ;t   б — при  0,0, 57,0 ;t   в — максимальные значения DH в сечении 

0
( ), ;x y   г —  точность  сохранения  интеграла  энергии бризерного поля 

En
;

En

 
 
 

  — для  

0,0   (SG);  — для 0,5   (NSM). Общее время моделирования  0,0, 60, 0t   
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В случае движущихся бризеров необходимо отметить некоторые 
особенности изменения скорости их движения. Например, в работе [12] 
при исследовании взаимодействия одномерных бризеров О(3) НСМ бы-
ло найдено, что скорость tv  ( 0,0)t   движения бризеров всегда меньше 

их начальной скорости 
0

,t tv v  тогда как при исследовании движущих-

ся ТС типа кинк/антикинк всегда сохранялось равенство 
0

.t tv v  Оче-

видно, что в случае бризеров определенная часть их энергии в начале 

эволюции  0
En tv  поглощается характерной осциллирующей динами-

кой. На рис. 6, а двумерный бризер (10) при 30,0t   проходит расстоя-

ние, равное 8s  единицам (средняя скорость — 30 0,2666),tv    и об-

щая потеря скорости loss 0,623 %.v   При 45,0t   бризер проходит 

расстояние 12,s   таким образом, скорость движения бризера (10) при 

0
0,7071tv  является постоянной: 0,2666tv   (при 0,0t   и  0,0).   

На рис. 6, б (в случае 0,5   и 
0

0,7071)tv   при 30,0t   бризер 

проходит расстояние 5s  единиц (средняя скорость — 30 0,1666,tv    

общая потеря скорости loss 0,7644 %).v   При 57,0t   бризер прохо-

дит расстояние 10,s   таким образом, в интервале  30,0,  57,0t  

можно наблюдать увеличение средней скорости движения бризера (10) 
до 57 0,1754tv    ( ( 5,3 %).  Разность скоростей в случаях 0,0   
(рис. 6, а) и 0,5   (рис. 6, б), а также неравномерность значений ско-
рости бризеров (10) О(3) НСМ (8) можно объяснить воздействием до-
полнительной динамики вращения изотопического спина  1 2 3, ,S s s s  

в пространстве сферы 2.S  
Анализ максимальных значений плотности энергии DH  бризеров 

(10) модели (8) в плоскостном сечении 0( , )x y  приведен на рис. 6, в: 

  max DH ,0, .x t  В случае 0,0   аналогично стационарному слу-

чаю, приведенному на рис. 3, можно условно выделить образование 
двух волновых пакетов  1 0,0, 25,0 ,t    2 25,0, 50,0 .t   В случае 

0,5   точка   max DH ,0,x t  осциллирует с относительно мень-

шими средними значениями частоты и амплитуды. В частности, при 
исследовании скорости движения бризера (10) модели (8) (при 

0,5)   выявлено существенное уменьшение ее значений в интерва-

ле  13,0, 17,0 :
tvt   0,0.tv   Эти факторы объясняют обнаруженные 

выше разности скоростей бризеров (10) до и после момента 30,0t   
для случая 0,5.   
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Заключение. В настоящей работе получены уравнения (6), (7) для 
фазовых параметров пробного решения (2) и определено точное ана-
литическое выражение для бризерного решения двумерного уравнения 
С–Г (9). Добавлением определенных возмущений найденным решени-
ям получены бризерные решения (10) двумерной О(3) НСМ (8). 

Отметим, что движущиеся осциллирующие решения в виде свето-
вых пуль двумерного уравнения С–Г, рассмотренные в работе [2], 
и стационарные периодические по времени решения, указанные в рабо-
те [3] (метастабильные бризеры), были получены приближенными ме-
тодами. Движущиеся бризеры уравнения С–Г, полученные в работе [1] 
при численном моделировании в интервале времени  0,0, 50,0 ,t  из-

лучают существенную часть своей энергии, точная величина которой 
в указанной работе не приводится.  

Модели стационарных и движущихся бризеров двумерной О(3) 
НСМ, полученные в настоящей работе аналитическими и численны-
ми методами, показывают их устойчивость при различных значениях 
скорости их движения 

0t
v  и частоты вращения 

0t
  вектора изотопи-

ческого спина  1 2 3, ,S s s s


 в пространстве сферы 2.S


 Наличие допол-

нительного вращения S  0( ,     0,0)   приводит к опреде-
ленной диссипации динамики внутренней степени свободы и 
плотности энергии DH  бризеров (10), а также к увеличению интегра-
ла их энергии En  (см. рис. 5).  

Необходимо отметить также отличительное свойство полученных 
бризерных солитонов вида (10), которое заключается в их особой ди-
намике (см. рис. 3, б, в, рис. 4, б, в), напоминающей динамику систем 
с разрывными колебаниями. Такие колебания происходят во многих 
нелинейных системах, и их исследование представляет определен-
ный практический интерес. Наконец, заметим, что результаты насто-
ящей работы позволяют провести исследования динамики взаимо-
действия бризеров двумерной О(3) НСМ, где в полной мере могут 
быть проявлены их особые частицеподобные свойства [18]. 
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Mathematical modeling of breathers 
of two-dimensional O(3) nonlinear sigma model 

© F.Sh. Shokirov 

S.U. Umarov Physical-Technical Institute  
of Academy of Sciences of the Republic of Tajikistan, Dushanbe, 734063, Tajikistan 

 
The study examined the formation and evolution of stationary and moving breathers of a 
two-dimensional O(3) nonlinear sigma model. We detected analytical form of trial func-
tions of two-dimensional sine-Gordon equations, which over time evolve into periodic 
(breather) solutions. According to the solutions found, by adding the rotation to an A3-

field vector in isotopic space 2S  we obtained the solutions for the O(3) nonlinear sigma 
model. Furthermore, we conducted the numerical study of the solutions dynamics and 
showed their stability in a stationary and a moving state for quite a long time, although 
in the presence of a weak radiation. 
 
Keywords: two-dimensional breather, nonlinear sigma model, sine-Gordon equation, av-
eraged Lagrangian, isotopic space, numerical simulation. 
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