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Рассмотрена плоская стационарная задача теории упругости о движении верти-

кальной сосредоточенной нагрузки вдоль поверхности упругого полупространства 

с тонким покрытием. В рамках длинноволновой асимптотической модели для вол-

ны Рэлея в случае упругого полупространства с покрытием исследуются режимы 

в приповерхностном слое при скоростях движения нагрузки, близких к резонансной 

скорости поверхностной волны. Получена классификация режимов в зависимости 

от соотношения скорости движения нагрузки и резонансной скорости, а также 

от знака линейного коэффициента дисперсии покрытия. Установлены режимы,  

в которых имеет место излучение от источника. Полученные результаты могут 

быть обобщены на случай более сложных физических свойств материала покры-

тия, включая эффекты анизотропии, вязкости и предварительной деформации. 

Ключевые слова: подвижная нагрузка, асимптотическая модель, волна Рэлея, 

тонкое покрытие. 

 
Введение. Исследование динамики волновых процессов в зада-

чах о подвижной нагрузке в упругих телах с покрытиями является 
актуальной проблемой науки и техники. Результаты этих исследова-
ний имеют многочисленные приложения, в том числе в методах не-
разрушающего контроля, а также для развития высокоскоростного 
железнодорожного транспорта.  

Среди классических работ, исследующих дисперсию волн в по-
крытии можно выделить [1, 2], а также [3], решение в которой опира-
ется на физические гипотезы. Следует заметить, что, как показано в 
работе [4], решение, полученное в [3], является асимптотически точ-
ным в рамках теории первого порядка, таким образом, включение 
дополнительных слагаемых [5] соответствует теориям более высоко-
го порядка и нуждается в более систематическом изложении. Из не-
давних работ в этой области отметим [6, 7], а также [8], в которой ис-
следовался знак линейного коэффициента дисперсии в зависимости 
от соотношения упругих параметров покрытия и полупространства. 
Одним из подходов к решению задачи является также метод пре-
дельного поглощения [9–12]. Заметим, что большое число парамет-
ров в задачах для упругих сред с покрытиями существенно усложня-
ет анализ, что стимулирует развитие приближенных подходов [2–4]. 

В настоящей работе исследуется динамика приповерхностного слоя 

в случае плоской задачи теории упругости о движении вертикальной 
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импульсной нагрузки для упругого полупространства с тонким покры-

тием. Предлагаемый подход опирается на длинноволновую приближен-

ную формулировку [4], являющуюся развитием асимптотической моде-

ли для волны Рэлея [13], успешно применяемой к задачам о подвижной 

нагрузке [14, 15], а также к смешанным задачам теории упругости [16]. 

Описываемая эллиптико-гиперболическая формулировка [4] ориенти-

рована на выделение вклада волны Рэлея в общую динамическую кар-

тину. Модель включает в себя эллиптические уравнения, описывающие 

затухание вглубь среды, а также сингулярно возмущенное гиперболиче-

ское уравнение, описывающее поверхностную динамику, в котором 

влияние покрытия отражено с помощью соответствующего псевдо-

дифференциального оператора.  

Использование приближенной формулировки существенно уп-

рощает анализ. Исследование сингулярно возмущенного гиперболи-

ческого уравнения на границе дает возможность классифицировать 

режимы движения импульсной нагрузки. Методом фиктивного по-

глощения в рамках постановки задачи были установлены сочетания 

дорезонансного (сверхрезонансного) режима с упругими параметра-

ми покрытия и полупространства, соответствующими локальному 

максимуму (минимуму) фазовой скорости. В этих случаях имеет ме-

сто излучение от движущегося источника, что соответствует вкладу 

полюсов на действительной оси для преобразованного по Фурье тан-

генциального напряжения. 

Постановка задачи. Рассмотрим упругую полуплоскость 

,x   0 ,y    c упругим покрытием ,x   0h y   . 

Зададим нагрузку на поверхности покрытия в виде вертикальной им-

пульсной силы Р, движущейся с постоянной скоростью v (рис. 1): 

 
00,    ( )   при    .xy yy P x vt y h       

  
(1) 

Перемещения и напряжения на границе между покрытием и по-

луплоскостью предполагаются непрерывными. В рамках данной ра-

боты изучаются длинные волны, т. е. предполагается, что толщина 

покрытия мала по сравнению с характерной длиной волны.  

Приведем краткое описание асимптотической модели для волны 

Рэлея в случае упругой полуплоскости с покрытием [4]. В этом слу-

чае затухание вглубь среды описывается псевдостатическими эллип-

тическими уравнениями  
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где   и   — упругие потенциалы; 

1/2
2

2
1 , 1, 2R

m

m

c
k m

c

 
   
 

 —

постоянные 
1( ,c 2c

 
и 

Rc  — скорости распространения продольной, 

поперечной волн и волны Рэлея соответственно).  

Рис. 1. Движение импульсной силы Р вдоль поверхности покрытия 

 

Поверхностная динамика для граничных условий (1) описывается 

сингулярно возмущенным гиперболическим уравнением при 0y    

  
2 2 2 2 2

2
02 2 2 2 2

1 1
,

2R

k
bh P x vt

x c t x x B

        
      

     
 (4) 

где 
2

2x





 − псевдодифференциальный оператор [4];   — сдвиго-

вый модуль Ламэ. 

Постоянная В определяется упругими свойствами полуплоскости: 

   2 2 41 2
2 1 2

2 1̀

1 1 1 ,
k k

B k k k
k k

       

а линейный коэффициент дисперсии [4, 8] 

 
 
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 (5) 

Здесь 
0  — сдвиговый модуль покрытия, а постоянные 

20k   
1/2

2

2
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1 ,Rc

c
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 

10
0

20

c

c
   определяются упругими свойствами покрытия.  

Уравнение (4) может быть представлено также в интегральной 

форме через преобразование Гильберта 

 
2 2 3 2

2
02 2 2 3

1 1
,

2R

bh d k
P x vt

x c t x B





       
    

        

где интеграл понимается в смысле главного значения. 
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На границе 0y   также справедливо соотношение между потен-

циалами 

 
2

2

2
.

1x k y

 

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 (6) 

Таким образом, для последовательного восстановления поля 

внутри области требуется сначала определить потенциал 
 
из реше-

ния краевой задачи для эллиптического уравнения (2) с граничным 

условием (4), а затем найти второй потенциал 
 
из краевой задачи 

(3), (6). 

Одномерная динамическая задача на поверхности полуплос-

кости. Сосредоточимся в данной работе на изучении уравнения (4). 

Переходя в подвижную систему координат    , ,y x vt y   , в рам-

ках автомодельного (стационарного) режима получим  

  
2 2 2 2

2
02 2 2

1
,

2

k
bh P

B

      
      
    

 (7) 

где 
2

2
1

R

v

c
   . 

Подстановка 0h   в (7), что соответствует отсутствию покрытия, 

приводит к результатам для упругой полуплоскости [17], представ-

ляющим собой главный член асимптотического разложения точного 

решения задачи [18].  

Вводя обозначения 

,
b h

 
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 

2

22

2 0

2
,

1

Bbh

k P

  
 


 

перепишем уравнение (7) как 

   
2

2
sgn( ) ,b


      


 

решение которого представимо в виде интеграла Фурье  

 
1

.
2 sgn( )

ie d

b

 




 

     (8) 

Из (8) видно, что в зависимости от знака произведения b  имеют 

место два случая, соответствующие наличию  0b или отсутст-

вию  0b  полюсов на действительной оси. 
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Рассмотрим сначала случай отсутствия полюсов  0 .b  Воз-

можны следующие варианты зависимости фазовой скорости 
фv  от 

волнового числа k в длинноволновой области  1 :k  

а) дорезонансный режим  0  в сочетании с локальным мини-

мумом фазовой скорости 
ф Rv c   0b   (рис. 2, а); 

б) сверхрезонансный режим  0  в сочетании с локальным 

максимумом фазовой скорости  0b   (рис. 2, б). 

Рис. 2. Дисперсионные кривые в длинноволновой об-
ласти 1k  при дорезонансном (а) и сверхрезонанс- 
      ном (б) режиме для случая отсутствия полюсов 

 

Тогда интеграл (8) вычисляется как 

  
0

1 1
Re ,

2 1 1

iie d e
d D

  




     

        (9) 

где выражение для ( )D t  имеет вид 

   
1

( ) Si sin Ci cos ,
2

D t t t t t
  

       
 

в котором 

0

sin
Si( )

t
x

t dx
x

  ,   
0

cos 1
Ci( ) ln

t
x

t t dx
x


      

есть интегральные тригонометрические функции [19], а 0,577   — 

постоянная Эйлера.  

Рассмотрим теперь второй случай  0 ,b  когда подынтеграль-

ное выражение в (8) имеет полюсы на действительной оси. Здесь 

также возможны два варианта: 

a) дорезонансный режим в сочетании с локальным максимумом 

фазовой скорости при 
ф Rv c  (рис. 3, а);  

б) сверхрезонансный режим в сочетании с локальным миниму-

мом фазовой скорости (рис. 3, б).  
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Рис. 3. Дисперсионные кривые в длинноволновой  
области 1k  при дорезонансном (а) и сверхрезо- 
  нансном (б) режиме для случая наличия полюсов 

Регуляризуем интеграл (8). Сначала преобразуем  

0 0

1 1 1
Re Re .

2 1 1

i i ie d e e
d d

bh

    




     

      
    

Используя метод предельного поглощения [9–12, 20], получим 

 0 0 0I I  
t v

    
          

    
 

0 0 I .
i

v

  
   

 
 

Следовательно,  для линейного коэффициента дисперсии (5) имеем 

   2 20
2 2 0

2
Im 1 1 0,b k k

Bv

 
     
 

 

т. е. полюс 
bh


  будет смещаться в верхнюю или нижнюю полу-

плоскость при 0  и 0  соответственно. Теперь интеграл (8) 

может быть вычислен с помощью контуров, приведенных на рис. 4. 

 

Рис. 4. Контуры интегрирования для (8) в случае  
дорезонансного (а) и сверхрезонансного (б) режима 

 



Околорезонансные режимы подвижной нагрузки в плоской задаче… 

 

63 

Рассмотрим сначала дорезонансный режим, т. е. 0  (см.  

рис. 4, а). Тогда впереди нагрузки  0   соответствующий контур 

расположен в первом квадранте и вклад полюса не учитывается, от-

куда 

1 1
Re

1 1 1

i i i

OA OABO BO

e d e d e d     
     

     
     

  
2

0 0

1 1
Re   .

1 1

ie e
d d D

i

  
     
        (10) 

Сзади нагрузки  0   с учетом вклада полюса получим, соот-

ветственно, 

1
0

1 1
Re 2Im Res Re

1 1 1

i i i

OC

e e e
d d

   


    

       

  2sin .D      (11) 

Таким образом, для дорезонансного случая из (10) и (11) имеем 

    2 sin .H D        (12) 

В сверхрезонансном режиме  0   (см. рис. 4, б) по аналогии 

получим 

    2 sin .H D       (13) 

Численные результаты.  Примеры числовых расчетов представ-

лены на рис. 5–7. На рис. 5 показано решение (9), соответствующее 

отсутствию полюсов на действительной оси. В этом случае реше-

ние быстро затухает по  .  

 
Рис. 5. Решение (9) для случая отсут- 

              ствия полюсов  0b  

Рис. 6. Решение (12) в дорезонанс- 

       ном режиме  0, 0b    
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Как видно из рис. 6, 7, иллюстри-

рующих решения (12), (13), вклад 

полюсов соответствует излучению от 

движущегося источника.  

Заключение. Данная работа содержит результаты анализа по-

верхностной динамики для задачи о подвижной нагрузке в случае 

упругой полуплоскости с покрытием. Приведена классификация ре-

жимов автомодельных решений в зависимости от скорости движения 

нагрузки и знака линейного коэффициента дисперсии. Выделены 

случаи, в которых имеет место излучение от движущегося источника. 

Результаты могут быть обобщены на случай покрытия с более 

сложными механическими свойствами, учитывающими эффекты 

анизотропии, вязкости и предварительной деформации. С помощью 

метода ВКБ (Вентцеля – Крамерса – Бриллюэна) может быть рас-

смотрен также случай зависимости упругих параметров среды от 

вертикальной координаты [21].  

 
Авторы посвящают статью д-ру техн. наук, профессору Г.Б. Мурав-

скому в связи с его 80-летием. 
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The study deals with the plane stationary problem of elasticity theory on the motion of a 

vertical concentrated load along the surface of an elastic half-space with a thin coating.  

The authors investigated modes in the surface layer at speeds close to the resonant speed 

of the surface wave. The research was done within the long-wave asymptotic model for 

the Rayleigh wave in the case of an elastic coated half-space. The modes are classified 

according to the ratio between the velocity of the load and the resonance speed and to the 

dispersion coefficient of linear coverage. The study discovers the modes having radiation 

from the source. The results obtained can be generalized to more complex physical prop-

erties of the coating material, including the effects of anisotropy, viscosity and pre-

straining. 
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