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Выведены общие и приближенные уравнения крутильных колебаний круглого вязко-
упругого стержня, вращающегося с постоянной угловой скоростью вокруг оси сим-
метрии. Разработан алгоритм, позволяющий определить напряженно-дефор-
мированное состояние этого стержня. На основе полученных приближенных урав-
нений колебаний численно решена задача о его крутильных колебаниях. Проведен 
сопоставительный анализ результатов, полученных для экспоненциального  
и слабосингулярного ядер оператора вязкоупругости. Даны оценки влияния вращения 
на колебания стержня.  

Ключевые слова: стержень, крутильные колебания, перемещение, напряжения, 
вращение, угловая скорость, вязкоупругость. 

Введение. Изучению задач о колебаниях вращающихся стержней 
и оболочек с учетом их вязкоупругих свойств посвящено небольшое 
количество работ. Динамическое поведение балки, вращающейся  
с постоянной угловой скоростью вокруг своей продольной оси, ис-
следовано в работе [1] для свободной, защемленной, свободно опер-
той балки, а также для других видов закрепления ее торцов. Задача о 
колебаниях стержня, вращающегося вокруг своей оси, с учетом гео-
метрической нелинейности, обусловленной применением неподвиж-
ных в продольном направлении шарнирных опор, решена в [2]. Сво-
бодные и вынужденные колебания вращающейся слоистой цилин-
дрической оболочки исследованы в работах [3–5]. 

Численное исследование влияния реологических параметров на 
характер колебаний наследственно-деформируемых систем имеет 
большое значение. В работе [6] показано, что дифференциальная зави-
симость между усилиями и деформациями, имеющая место при реше-
нии динамических задач вязкоупругости, приводит к определенной 
погрешности, особенно в начальный момент времени. Исследования 
нелинейной устойчивости и колебания вязкоупругой балки, движу-
щейся в осевом направлении, выполнены на основе моделей Кельвина 
и Максвелла в работе [7]. Проведено сравнение численных решений 
полных нелинейных и линеаризованных уравнений колеба- 
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ния. Работа [8] посвящена решению спектральной задачи, связанной 
с описанием малых поперечных колебаний однородного вязкоупру-
гого стержня. В работе [9] предложена методика расчета эффектив-
ных вязкоупругих характеристик композиционных материалов при 
установившихся циклических колебаниях, которая основана на мето-
де асимптотического осреднения периодических структур и конечно-
элементном решении локальных задач вязкоупругости на ячейке пе-
риодичности композитов. 

Построение основных соотношений стержневой теории заключа-
ется в приведении трехмерной по пространственным координатам за-
дачи к двумерной или одномерной. Исследователи при этом стремятся 
вывести уточненные дифференциальные уравнения колебаний, учиты-
вающие те или иные физические, механические или геометрические 
факторы [10, 11].  

Постановка задачи. В цилиндрической системе координат ( , , )r z  
рассмотрим однородный и изотропный круглый вязкоупругий стер-
жень радиусом 0r , вращающийся вокруг оси симметрии с постоянной 

угловой скоростью .  Считается, что механические свойства стерж-
ня описываются в рамках линейной теории вязкоупругости, в кото-
рой связь между напряжениями и деформациями задана соотношени-
ями Больцмана — Вольтерра.  

Задача о крутильных колебаниях круглого цилиндрического стерж-
ня может быть рассмотрена отдельно от задачи продольно-радиаль-
ных его колебаний [10, 11]. В силу осесимметричности задачи ком-
поненты полей напряжений и перемещений не зависят от угловой 
координаты .  При этом отличны от нуля только перемещение 

( , , )U r z t  и напряжения ( , , )r r z t , ( , , )z r z t  [12]: 
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; ; ,r zU Mr M
r r r r r z  

                   
 (1) 

где   — компонента векторного потенциала поперечных волн; 

0

( ) ( ) ( )
t

M t R t d

 
         

  
  — оператор вязкоупругости (   — 

функция, к которой применяется оператор);   — модуль сдвига; 
( )R t  — ядро оператора вязкоупругости.  
Предполагается, что оператор M обратимый.  
При учете центробежной силы, вызванной вращением стержня, 

уравнение его движения относительно ненулевых компонент напря-
жения имеет вид [5] 
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         
 (2) 

где   — плотность материала стержня.  
Предполагается, что крутильные колебания стержня вызваны 

напряжением ( , )rf z t  на его поверхности, т. е. граничное условие 

задачи при 0r r  имеет вид  

 ( , ) ( , ).r rz t f z t    (3) 

Начальные условия считаются нулевыми.  
Вывод уравнений колебаний. Подставив выражения пере-

мещения и напряжений (1) в уравнение движения (2) получим 
следующее интегродифференциальное уравнение:  

 
2 2 2

2
2 2 2

1
.M

r rr z t

         
                

 (4) 

Искомую функцию в формуле (4) представим в виде [13] 

 

1 2

(0)( , ) ( , ) ,pt kz

l l

t z p k e dpdk     (5) 

где ( , )t z  — непрерывная функция в области 0t   и 0;z   
(0) ( , )p k  — образ при ее двухмерном преобразовании (Re 0,p   

arg ;p     Re 0,k   arg );k     1l  и 2l  — неограниченные 

открытые контуры в комплексной плоскости.  
Подставляя (5) в уравнение (4), получим обыкновенное 

дифференциальное уравнение Бесселя. Общее решение этого 
уравнения, ограниченное при 0,r   имеет вид  

 (0)
0( , ) ( ).p k BI r    (6) 

Здесь 0I  — модифицированная функция Бесселя нулевого порядка;  

B  — постоянная интегрирования;  

  2 1 2 2 2
0 ,M p k      (7) 

где  0 1 ( ) .M R p    
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Представив перемещение U  в виде (5), выразив полученное 

таким образом перемещение (0)U  через общее решение (6) и 

разложив в нем функцию Бесселя в ряд по степеням радиальной 
координаты, будем иметь 

 
 
 

2 1
(0) 2 (0)

0

2
( , , ) 2 ,

! 1 !

n
n

n

r
U r p k U

n n






 
  (8) 

где (0) 21

2
U B    — главная часть перемещения (0)U .  

Введем операторы  n   по формулам  

 1 2

2 ,n n pt kz

l l

e dpdk      0, 1, 2,...n  .  (9) 

Тогда, представив напряжение r  также в виде (5), из граничного 

условия (3) получим 

 
 
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n
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
 




      (10) 

где 1M   — оператор, обратный оператору .M  

Если учесть, что параметр   имеет вид (7), то нетрудно увидеть, 

что операторы n  в переменных ( , )z t  имеют вид [10] 

 
2 2

1 2
2 2

, 1, 2, ...

n

n M n
t z

   
            

.  (11) 

С учетом вида введенных интегродифференциальных операторов 
n  ( 0, 1, 2, ...n  ) полученное уравнение (10) является 

интегродифференциальным уравнением бесконечно высокого 
порядка относительно главной части крутильного перемещения. 
Поэтому назовем его общим уравнением крутильных колебаний 
вязкоупругого круглого стержня, вращающегося с постоянной 
угловой скоростью вокруг своей оси.  

Отметим, что уравнение (10) содержит производные любого 
порядка по координате z  и по времени .t  Кроме того, правая часть 
этого уравнения учитывает внешнее усилие, приложенное к 
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поверхности стержня, и отражает зависимость от оператора вязко-
вязкоупругости, если он известен для конкретной среды.  

Формулы для перемещения и напряжений. Применив 
преобразование (5) к выражению преобразованного перемещения (8), с 
учетом (9) получим  

 
2 1

0

( 2)
( , , ) 2 .

!( 1)!

n
n

n

r
U r z t U

n n






 
  (12) 

Аналогично для ненулевых компонент напряжений будем иметь  
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



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


  

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  

 


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 (13)  

Формулы (12) и (13) позволяют с заданной точностью по 
радиальной координате и времени определить перемещение и 
напряжения в точках произвольного сечения стержня через решение 
уравнения (10). 

Приближенные уравнения колебаний. Как уже отмечалось, 
уравнение (10) имеет очень высокий порядок и, естественно, в таком 
виде не может быть применено в инженерных расчетах. Отсюда сле-
дует, что необходимо ограничить количество его членов, т. е. огра-
ничиться нулевым ( 0n  ), первым ( 1n  ), вторым ( 2n  ) и после-
дующими приближениями.  

Предполагая, что для случая вращающегося стержня также вы-
полнены условия относительно области применимости «усеченного» 
таким образом уравнения, аналогичные полученным в работах [10, 11], 
можно найти различные приближенные уравнения из уравнения (10). 
Так, ограничиваясь в нем нулевым приближением, имеем уравнение 
второго порядка 

  
2 2 2

1 2 10
2 2

,
4 r
r

M U M f
t z

 


   
          

 (14) 

которое при отсутствии вращения в точности совпадает с 
уравнением, полученным профессором И.Г. Филипповым [10]. 

Первое приближение уравнения (10) дает уравнение четвертого 
порядка 
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  
          

   
           

 (15) 

которое является уточненным по отношению к (14) и учитывает в 
своей структуре, кроме угловой скорости вращения, деформацию 
поперечного сдвига и инерцию вращения. 

При ограничении нулевым, первым или другими приближениями 
уравнения колебаний (10) следует также ограничиться соответствующим 
приближением в формулах для перемещения (12) и напряжений (13): 

 при 0n   
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4r z
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  (16) 

 при 1n   
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 
  
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(17) 

Если найдены решения уравнения (14) или (15), то по ним легко 
определить напряженно-деформированное состояние стержня 
посредством формул (16) или (17). 

Краевая задача. Исследуем влияние вращения и вязкоупругих 
свойств материала на напряженно-деформированное состояние 
стержня на основе выведенных уравнений колебания. Допустим, что 
поверхность стержня свободна от внешних нагрузок. Тогда, полагая 

0rf    в правой части уравнения (14), учитывая вид оператора 

вязкоупругости и вводя безразмерные переменные по формулам  

* * *0
0

0

; ; ; ,
r b

t t z z r U U
b r

       

где /b     — скорость распространения поперечных волн в 

материале стержня, получим 
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2 2 2

2
2 2 2

0

( ) 0.
tU U U

R t d U
t z z
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      

    (18) 

Для дальнейших расчетов для оператора вязкоупругости примем 
слабосингулярное ядро А.Р. Ржаницына [14]: 

 1( ) ,tR t At e    

где , ,A    — реологические параметры, удовлетворяющие 
условиям 0, 0 1, 0A       . 

Рассмотрим круглый стержень длиной ,l  подвергнутый 
воздействию синусоидальной внешней нагрузки на одном конце. 
Будем считать, что другой его конец закреплен. Тогда перемещения 

( , )U z t  точек стержня удовлетворяют следующим граничным и 
начальным условиям:  

 1

(0, ) sin
t

U t A
t


     при 0z  ; ( , ) 0U l t     при ;z l  (19) 

 

( ,0)
( ,0) 0

U z
U z

t


 


   при 0,t    (20) 

где 1t  — время действия нагрузки. 

Численный алгоритм решения. Для решения краевой задачи 
выразим интегродифференциальное уравнение (18) с помощью 
неявной схемы Кранка — Никольсона [15], при этом на каждом 
временном шаге интеграл в уравнении (18) вычисляется по 
квадратурной формуле прямоугольников  

 1 1 1
1 1 ,n n n

i i i i i iU mU nU f  
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где h  — шаг по времени;   — шаг по координате. 
Граничные условия (19) имеют вид 
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1

sinn ntU A
t


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NU    при ,z l   (22) 

а начальные условия (20) —  

 
1 0

0 0i i
i

U U
U

h


   при 0.t   (23) 

Система алгебраических уравнений (21)–(23) решена с помощью 
метода прогонки.  

Результаты численных расчетов. Для расчетов приняты 
следующие значения безразмерных параметров: 0 1r  ; 10l  . 

Полученные результаты представлены на рис. 1–6.  
 

 
Рис. 1. Зависимости перемещения от времени в фиксированных (z = 2, 
5, 8) сечениях вязкоупругого стержня с экспоненциальным ядром 
                  ( 0,1;A   1)   при различных значениях параметра :  

1 — упругий стержень; 2 — 1;   3 — 0,5;   4 — 0,1   

 
Рис. 2. Зависимости перемещения от времени в фиксированных (z = 2, 
5, 8) сечениях вязкоупругого стержня со слабосингулярным ядром  
          ( 0,1;A   1)   при различных значениях параметра :  

1 — упругий стержень; 2 — 1;   3 — 0,5;   4 — 0,1   
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Рис. 3. Зависимости перемещения от времени в фиксированных (z = 2, 
5, 8) сечениях вязкоупругого стержня со слабосингулярным ядром 
              ( 0,1;A  0,1)   для различных значений параметра :  

1 — упругий стержень; 2 — 0,5;   3 — 0, 25;   4 — 0,1   

 

 
Рис. 4. Изменения напряжения с течением времени в фиксированных  

(z = 2, 5, 8) сечениях стержней: 

1 — упругого (А = 0); 2 — вязкоупругого (A = 0,1; α = 0,25; β = 0,5)  

 
Рис. 5. Зависимости перемещения точек различных сечений упругого 

стержня от времени при различной угловой скорости: 

1 — 0;   2 — 0, 2;   3 — 0,3    
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Рис. 6. Зависимости перемещения точек различных сечений 

вязкоупругого стержня (A = 0,1; α = 0,25; β = 0,5) от времени при различной 
угловой скорости: 

1 — 0;   2 — 0, 2;   3 — 0,3    

Анализ полученных результатов. Зависимости перемещения U  
вязкоупругого стержня от времени (см. рис. 1) для различных 
значений параметра   экспоненциального ядра ( 1  ) показывают 
снижение амплитуды перемещения при уменьшении .  В сечении z =  
= 8 максимальное значение перемещения снижается на 33 %. 

Кривые изменения перемещения во времени при различных 
значениях параметров   и   в вязкоупругом стержне со 
слабосингулярным ядром (см. рис. 2 и 3) показывают, что и в этом 
случае уменьшение значений параметра   приводит к уменьшению 
амплитуды перемещения. При близких к нулю значениях показателя 
сингулярности   наблюдается запаздывание волн, сопровождаемое 
снижением амплитуды. Максимальное значение амплитуды 
перемещения при 0,1   и 0,1   снижается на 51 % по сравнению с 
максимальным значением в случае упругого стержня ( 0A  ). Отсюда 
следует, что влияние параметра   на амплитуду перемещения 
существеннее, чем влияние параметра   (см. рис. 3). Это подтверждает 
полученный в работе [1] вывод о предпочтительности применения 
слабосингулярных ядер вязкоупругости. 

С удалением от торца наблюдается затухание во времени 
вязкоупругих напряжений z  (см. рис. 4) в фиксированных сечениях  
(z = 2, 5, 8) (А = 0,1; α = 0,25; β = 0,5) стержня. Например, 
максимальное значение напряжения в сечении z = 2 достигается при  
t = 4, 8, а в сечениях z = 5 и z = 8 — при t = 8 и t = 11,2 соответственно. 
При этом максимальные значения вязкоупругих напряжений в 
сечениях z = 2 и z = 8 различаются более чем на 52 %. 

В случае упругого стержня, вращающегося вокруг своей оси, из 
зависимостей изменения перемещения во времени при различных 
значениях угловой скорости   (см. рис. 5) следует, что с увеличением 
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угловой скорости возрастает амплитуда перемещения. В сечении 
z = 8 при угловой скорости 0,3   перемещение увеличивается  
в 1,5 раза и форма колебаний изменяется. 

Возрастание амплитуды перемещения с увеличением угловой 
скорости наблюдается и в случае учета вязкоупругих свойств (см. рис. 
6). При 0,3   амплитуда перемещения в вязкоупругом стержне со 
слабосингулярным ядром уменьшается в 1,12 раза, а в случае упругого 
стержня — в 1,5 раза.  

Выводы. В работе предложена новая математическая модель 
крутильных колебаний вязкоупругого круглого стержня, вращающегося 
с постоянной угловой скоростью вокруг своей оси. Исследовано 
влияние на колебания стержня его вязкоупругих характеристик и 
вращения. Установлено, что учет вязкоупругости приводит к 
уменьшению амплитуды колебаний и запаздыванию волны, а учет 
вращения — к увеличению амплитуды колебаний. Создан алгоритм, 
позволяющий при проведении численных экспериментов варьировать 
параметры вязкоупругости, угловую скорость и внешние силы, 
действующие на стержень.  
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Torsional vibrations of the viscoelastic round bar rotating  
with the constant angular velocity 

© Kh.Kh. Khudoynazarov1, A. Abdirashidov2, Sh.M. Burkutboyev1 
1Tashkent State Technical University, Tashkent, 100095, Uzbekistan 

2Samarkand State University, Samarkand, 140100, Uzbekistan 

The purpose of this article is to deduce general and approximate equations for the 
torsional vibration of the viscoelastic round bar rotating around the symmetry axis with 
the constant angular velocity. Within the research we develop the algorithm allowing to 
define the bar deflected mode. The received approximate equations enabled to 
numerically solve the problem of the bar torsional vibrations. Moreover, we carry out a 
comparative analysis of the results obtained for exponential and weakly singular kernels 
of the viscoelastic operator. As a result, we estimate the rotation influence on the bar 
vibrations. 

Keywords: bar, torsional vibrations, displacement, stress, rotation, angular velocity, 
viscoelasticity. 
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