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Применение метода RKDG для численного решения 
трехмерных уравнений газовой динамики  

на неструктурированных сетках  

© Ю.И. Димитриенко, М.Н. Коряков, А.А. Захаров 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta dis-
continuous Galerkin) для численного интегрирования трехмерной системы уравне-
ний идеального газа на неструктурированных сетках. Проведено решение двух 
тестовых задач с помощью представленного алгоритма. Для каждой задачи при-
ведено сравнение с известными аналитическими решениями или же с табличными 
данными. Дана оценка погрешности решения.  
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Введение. Численное моделирование в задачах газовой динами-
ки играет важную роль при проектировании сложных технических 
систем: конструкций планера самолетов, изделий ракетной техники, 
двигательных систем и других объектов [1−7]. Несмотря на то что в 
настоящее время существует значительное число программных 
продуктов, в том числе коммерческих, которые предназначены для 
решения задач газовой динамики, универсальных программных 
средств и методов численного решения уравнений газовой динами-
ки, применимых для широкого спектра прикладных задач, пока не 
существует.  

Среди численных методов решения задач газовой динамики в по-
следнее время широкое распространение приобрели конечно-
разностные методы типа TVD, которые обладают такими необходи-
мыми свойствами, как монотонность решения и второй порядок  
аппроксимации. Однако при решении реальных задач со сложной гео-
метрией обтекаемого тела построить гладкую конечно-разностную 
сетку, которая необходима для разностных схем повышенного порядка 
точности, весьма трудно. Поэтому в таких случаях предпочтительнее 
использовать неструктурированные сетки и конечно-объемные или 
конечно-элементные методы. Одним из перспективных методов реше-
ния трехмерных задач нестационарной газовой динамики является ме-
тод RKDG второго порядка, который относится к классу TVD-схем 
благодаря отдельной процедуре монотонизации. Известны положи-
тельные результаты применения этого метода для двумерных плоских 
и осесимметричных задач газовой динамики [8, 9]. Работ, в которых 
бы излагался практический опыт разработки программного обеспече-
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ния для решения 3D-задач газовой динамики на основе метода RKDG, 
в настоящее время крайне мало.  

Статья посвящена разработке численного алгоритма и программ-
ного обеспечения, реализующего этот алгоритм для 3D-конечно-
элементного метода RKDG второго порядка для решения нестацио-
нарной задачи движения идеального газа (системы уравнений Эйлера).  

Метод RKDG применяют на тетраэдральной расчетной сетке. Для 
построения тетраэдральной сетки используют разработанный авто-
рами в НОЦ «СИМПЛЕКС» МГТУ им. Н.Э. Баумана генератор ко-
нечно-разностных адаптивных сеток, входящий в программный ком-
плекс Sigma. В сгенерированной конечно-разностной сетке выделя-
ются гексаэдральные элементы, каждый из которых разбивается на 
пять или шесть тетраэдров. На оси симметрии генератор создает вы-
рожденный элемент: о-грид. Полученная таким образом тетраэдраль-
ная сетка сохраняет адаптацию сеточных линий под границу области 
изучаемого тела и позволяет получать более качественную картину 
течения, чем на сетке, в которой ребра тетраэдров ориентированы 
произвольным образом. Кроме того, сеточный генератор поддержи-
вает функцию сгущения сеточных линий в направлении обтекаемого 
тела, что позволяет повысить точность расчета вблизи рассматривае-
мого объекта.  

На рис. 1, а представлена сетка, построенная генератором Sigma. 
На рис. 1, б — сетка, построенная с помощью триангуляции Делоне в 
программном продукте gmsh (http://geuz.org/gmsh). 

 

 

а б 

Рис. 1. Примеры нестуктурированных тетраэдральных сеток,  
построенных генераторами Sigma (а) и gmsh (б) 
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Математическая постановка задачи. Во всей области необхо-
димо решить систему уравнений идеального нетеплопроводного газа 
(система уравнений Эйлера), состоящую из законов сохранения мас-
сы, импульса и энергии [10]. Система уравнений Эйлера в бескоор-
динатной форме выглядит следующим образом: 
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где   — плотность газа, кг/м3; v  — вектор скорости, м/с; p  — дав-

ление, Па; E  — метрический тензор; 
2

( 1) 2

p
  

  
v

 — массовая 

плотность полной энергии; 1,4   — показатель адиабаты. 
Система (1) замыкается следующими граничными и начальными 

условиями: 
1) на поверхности, представляющей собой твердую непроницае-

мую стенку, ставится условие непротекания 

0, v n  

где n  — единичный вектор внешней нормали к поверхности; 
2) на поверхности, где выполняются условия 0vn  и avn  

(сверхзвуковая граница входа), задаются параметры набегающего по-
тока: ; ; p p      v v , a  — местная скорость звука; 

3) на поверхности, где выполняются условия 0vn  и avn  

(сверхзвуковая граница выхода), граничные условия не задаются; 
4) на поверхности, которая является плоскостью симметрии, за-

даются следующие условия: 

0; 0; 0;I
v p 

  
  

vn
n n n

, 

где I  — касательные к поверхности векторы ( 0I n ), 1,2I  ; 
5) начальные условия к системе (1) имеют вид 

0 0 0(0, ) ( ); (0, ) ( ); (0, ) ( )p p    x x v x v x x x . 
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Численный метод. Запишем систему (1) в декартовой системе 
координат: 
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  (2) 

где введены следующие вектор-столбцы: 
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1 2 3, ,w w w  — компоненты вектора скорости в декартовом базисе. 
Каждое из уравнений системы (2) представляет собой скалярное 

уравнение вида  

 ( ) 0, 1, ..., 5,
i

iu
f i

t


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
U  (4) 

где iu  — соответствующий компонент вектора ;U  ( )if U

 1 2 3( ), ( ), ( ) .i i iF F F U U U  

Применим для решения системы (4) конечно-элементный метод 
RKDG [11]. Введем в рассматриваемой расчетной области конечно-
элементную тетраэдральную сетку (рис. 2). Внутри каждого тетраэд-
ра построим линейные функции формы ( , , ),j x y z  1, ..., 4,j   обла-

дающие свойством ( )j k jka   , где jk  — символ Кронекера; ,ka  

1, ..., 4k   — точки Гаусса [12]. 
Умножим (4) на функцию формы , 1, ..., 4j j   и проинтегри-

руем по объему тетраэдра: 
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Рис. 2. Тетраэдр и треугольник с точками Гаусса 

Применив к правой части в (5) формулу интегрирования по ча-
стям, получим 
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где n  — единичный вектор внешней нормали к грани тетраэдра; S  — 

площадь соответствующей грани. Так как функция ( )if U n  в общем 
случае при переходе через грань тетраэдра является разрывной, то ее 

следует заменить функцией численного потока int ext( , )if U U , кото-
рая зависит от состояния газа по разные стороны от рассматриваемой 
грани. 

Интегралы в (6) вычисляются с помощью квадратур Гаусса: 
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Применяя метод разделения переменных, переменную iu  в (6) 
аппроксимируем линейной функцией 
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то, подставив (7) в (6), получим 
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Производная по времени аппроксимируется явным методом Эй-
лера первого порядка точности [13], также можно использовать мно-
гошаговые схемы Рунге — Кутта [11, 13] для повышения точности 
аппроксимации. 

Рассмотрим процедуру определения функции численного пото-

ка int ext( , )if U U . Представим систему уравнений (2) в следующем 
виде [14]: 
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где   — координатная линия, направленная вдоль вектора нормали n ; 

T  — матрица поворота, а 1T  — обратная к ней. Тогда 
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Обратная матрица к T  совпадает с транспонированной, т. е. 1 т . T T  
Поставим для системы (9) задачу Римана относительно вектора 

неизвестных TU с начальными данными справа и слева от грани тет-
раэдра: 
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Полученную задачу Римана можно решить точно [14, 15] или 
приближенно, используя такие методы, как HLL, HLLC, Лакса — 

Фридрихса и др. [14, 16]. Далее с помощью обратной матрицы 1T  
необходимо вернуться к исходному вектору неизвестных U . 

Линейная аппроксимация вектора неизвестных U  внутри тет-
раэдра обеспечивает второй порядок точности решения. Схема (8) 
также является линейной. Согласно теореме Годунова [15], линей-
ная схема второго порядка аппроксимации порождает нефизиче-
ские осцилляции вблизи высоких градиентов решения, таких как 
ударные волны и контактные разрывы. Для устранения этих де-
фектов решения необходимо провести процедуру монотонизации 
решения. Опишем один из возможных вариантов такого ограничи-
теля [16].  

Направим ось   в системе (9) вдоль вектора, соединяющего 
центр тетраэдра с одной из его вершин. Перейдем от вектора консер-
вативных переменных U  к вектору характеристических переменных 

V LU . R  и L  — матрицы правых и левых собственных векторов 

матрицы Якоби 
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 системы (9): 
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где Λ  — диагональная матрица собственных значений матрицы 
Якоби,  , , , ,l l l l ldiag v a v v v v a  Λ , lv  vl  — проекция скорости 

на единичный вектор  , ,x y zl l ll , направленный вдоль оси  . Мат-

рицы R  и L  имеют следующий вид [17]: 
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совая плотность кинетической энергии; 
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. 

В характеристических переменных система уравнений распадается 
на пять независимых гиперболических уравнений, к каждому из кото-
рых можно применить многомерную реконструкцию решения, удо-
влетворяющую свойству TVD. Для каждой компоненты iv  вектора V  

находим  min min , mini i i
m n

n
v v v ;  max max ,maxi i i

m n
n

v v v , 1,...,5i  , 

1,...,4n  ; индекс m  означает центр рассматриваемого тетраэдра;  
n  — центр соседнего тетраэдра. Далее определим 

max

min

min 1, , если 0;

min 1, , если 0;

1, если 0,

i i
i im
j mi i

j m

i i
i i im
j j mi i

j m
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v v

v v

v v
v v

v v

v v

  
      

   
        

  

 

где i
jv  — значения в вершинах рассматриваемого тетраэдра, 1,..., 4j  . 

Пусть  1 2 3 4min , , ,i i i i i      . Тогда ограниченные наклоны i i
m  , 

i i
m   и i i

m   будут удовлетворять свойству TVD. Здесь через i
m , 

i
m  и i

m  обозначены наклоны гиперплоскости решения в характери-
стических переменных V  для тетраэдра m . После монотонной ре-
конструкции решения необходимо вернуться к исходным консерва-
тивным переменным U  с помощью матрицы правых собственных 
векторов: U RV . Другие алгоритмы многомерных ограничителей 
решения можно найти в [16, 17]. 

Задача о распаде произвольного разрыва. Физически эту зада-
чу можно представить как трубу, разделенную диафрагмой с коорди-
натой 0,5x   (все параметры в этой задаче безразмерные). Справа и 
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слева от диафрагмы находится один и тот же газ, но при различных 
условиях. В момент времени 0t   диафрагма рвется. Необходимо 
найти состояние газа в момент времени 0,25.t   Начальные данные к 
этой задаче следующие: 

1,0;

0,0;

1,0;

L

L

L

v

p

 
 
 

    

0,125;

0,0;

0,1.

R

R

R

v

p

 
 
 

 

Задача имеет аналитическое решение [10]. На рис. 3 представле-
ны графики плотности, скорости и давления в зависимости от про-
дольной координаты .x  На графиках показан момент времени 

0,25.t   Размер сетки вдоль оси составляет 100 узлов. 

Рис. 3. Распределение значений плотности (а), скорости (б) и давления (в) 
по осевой координате в задаче о распаде произвольного разрыва: 

1 — численное решение методом RKDG; 2 — численное решение методом TVD-
типа Хартена [18, 19]; 3 — аналитическое решение 

Из графиков видно хорошее совпадение численного (для обоих 
методов) и аналитического решений, отсутствие нефизических ос-
цилляций вблизи разрывов решения, разрывы в численном решении 
«размазываются» на 2–3 расчетные ячейки.  

На рис. 4 представлены графики относительной погрешности для 
плотности и давления.  
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Рис. 4. Распределение относительной погрешности по плотности (а) и дав-
лению (б) по осевой координате в задаче о распаде произвольного разрыва: 

1 — метод RKDG; 2 — метод TVD-типа Хартена  

Из графиков видно, что метод RKDG имеет меньшую погреш-
ность и по плотности, и по давлению вблизи ударной волны. В целом 
в областях гладкости решения относительная погрешность обоих 
численных методов не превышает 5 %. 

Обтекание сферы гиперзвуковым потоком. На рис. 5 пред-
ставлены графики давления и плотности вдоль образующей сферы 
для числа Маха набегающего потока M 10.  Давление и плотность 
на графиках отнесены к значениям в набегающем потоке. Размер сет-
ки по , ,r    составляет 25 25 24.   В радиальном направлении сде-
лано сгущение сетки по следующему закону: 

1 1

1

1 1 1 1

ln(1 ) 0 (1 ) ;

( )
1( ) / 1 ln ,

k

k k

c c
b

X

x c b x
b



             


  
            
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где , const 0.k b с      



Ю.И. Димитриенко, М.Н. Коряков, А.А. Захаров 

86 

Рис. 5. Распределение безразмерных плотности (а) и давления (б)  
вдоль угловой координаты по образующей сферы: 

1 — табличные данные [20]; 2 — расчет методом RKDG;  
3 — расчет конечно-объемным неявным методом [21]  

На рис. 6 представлены графики относительной погрешности 
плотности и давления. Из графиков видно, что погрешность плотно-
сти для обоих методов не превышает 4 %. Погрешность давления до 
угла 75  не превышает 4 %, а далее растет и достигает 10 % при 

90 .    Существенное повышение погрешности при 75    связано 
с тем, что в этой области образующая сферы стремится к прямой ли-
нии, и для более точного воспроизведения решения необходимо уве-
личивать количество сеточных линий. 

Заключение. Предложен алгоритм численного моделирования 
трехмерных нестационарных газодинамических процессов на основе 
метода RKDG на неструктурированных сетках. Проведено сравнение 
результатов решения данным методом с известными аналитическими 
методами и табличными данными. Сравнения показали, что за исклю-
чением некоторых особенных областей (ударных волн, контактных 
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Рис. 6. Относительная погрешность плотности (а)  
и давления (б) вдоль образующей сферы: 

1 — расчет методом RKDG; 2 — расчет неявным методом 

разрывов) ошибка решения не превышает 4…5 %, что является хоро-
шей точностью. Кроме того, ошибку решения можно уменьшить, до-
полнительно измельчая расчетную сетку. Сравнение с другими из-
вестными численными методами, в частности на основе схем TVD, 
показало, что точность рассмотренного метода RKDG не ниже точно-
сти данных разностных схем, но этот метод обладает определенной 
универсальностью, позволяя проводить вычисления на сетках более 
низкого качества, в том числе на неструктурированных. Таким обра-
зом, предложенный алгоритм метода RKDG на тестовых задачах пока-
зал себя с положительной стороны и может быть эффективно приме-
нен для решения трехмерных задач газовой динамики со сложной гео-
метрией изучаемого тела. 

Исследование выполнено при поддержке гранта Президента РФ МК-
3007.2015.8. 

Работа выполнена с использованием ресурсов суперкомпьютерного 
комплекса МГУ им. М.В. Ломоносова. 
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This article deals with the finite-element RKDG method (Runge-Kutta Discontinuous 
Galerkin) and its application for numerical integration of three-dimensional system of 
equations of ideal gas on unstructured grids. By means of the described algorithm we 
solved two test tasks. For each task we conducted the analysis and compared the task 
solution with well-known analytical solutions or with tabular data. We also give error 
assessment in the solution. 

Keywords: gas dynamics, ideal gas, numerical methods, RKDG, TVD. 
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