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УДК 536.2 

Применение метода наименьших квадратов  
к задаче о переносе излучения в шаровой полости 

© В.С. Зарубин, О.В. Пугачев, И.Ю. Савельева 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Многие используемые в технике теплозащитные материалы имеют пористую 
структуру. При интенсивном тепловом воздействии возникает необходимость 
учитывать перенос тепловой энергии путем излучения в порах таких материалов. 
Построена математическая модель, описывающая теплообмен излучением в 
шаровой полости, форму которой можно рассматривать как среднюю 
статистическую по отношению к формам замкнутых пор в твердых телах. Для 
количественного анализа этой модели использован метод наименьших квадратов. 
Введен эквивалентный коэффициент теплопроводности условной сплошной среды, 
заполняющей пору, что позволяет рассматривать материал с пористой 
структурой как сплошное неоднородное твердое тело.  

Ключевые слова: шаровая полость, математическая модель переноса излучения, 
метод наименьших квадратов. 

Введение. Перенос тепловой энергии в пористых теплозащитных 
материалах наряду с теплопроводностью происходит и путем тепло-
вого излучения [1, 2]. К таким материалам можно отнести, например 
композиты с сотовым заполнителем [3, 4], конструктивно-орто-
тропные системы [5] и сферопластики [6]. Пористая структура тепло-
защитного материала может формироваться в процессе теплового 
воздействия вследствие термодеструкции [7]. Для получения количе-
ственной оценки интенсивности теплопереноса излучением в таких 
материалах целесообразно использовать методы математического 
моделирования [8, 9]. 

Существуют различные подходы к построению математических 
моделей процесса переноса тепловой энергии излучением через замк-
нутые поры в твердых телах. При этом пору условно заменяют вклю-
чением, материал которого имеет некоторый эквивалентный коэффи-
циент теплопроводности R , подлежащий определению с использова-
нием той или иной математической модели. В книгах [10, 11] рассмот-
рены работы, посвященные определению величины R  для замкнутых 
пор различных форм, среди которых в качестве средней статистиче-
ской часто принимают форму шаровой полости. В большинстве этих 
работ использованы математические модели, в которых не учитывает-
ся градиент температуры в окрестности поры. Однако влияние этого 
фактора возрастает по мере интенсификации теплового воздействия на 
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пористые теплозащитные материалы [12, 13]. В статье представлено 
решение задачи о переносе излучения в шаровой полости с учетом не-
однородного распределения температуры в окрестности этой полости 
с применением метода наименьших квадратов.  

Модель теплопереноса излучением в шаровой полости. Свой-
ства непрозрачной поверхности шаровой полости радиусом 0r  примем 
соответствующими свойствам диффузно-серой поверхности с коэф-
фициентом излучения const,   а среду в этой полости будем считать 
диатермичной, т. е. не поглощающей и не рассеивающей излучение 
[14]. Для определения теплового потока, проходящего через эту по-
лость при неоднородном распределении температуры ( )T P  на ее по-
верхности S  ( P S ), введем плотности потоков падающего ( )q P  и 
собственного 0 ( )q P  излучений, где, согласно закону Стефана — 

Больцмана [15], 4
0 0( ) ( )q P T P  , а 8

0 5,67 10     Вт/(м2· К4). Пада-
ющее на непрозрачную поверхность излучение частично поглощается  
( Aq ) и частично отражается ( Rq ), для диффузно-серой поверхности 
коэффициент поглощения A   и коэффициент поглощения 1R A    

1 .    Собственное излучение после сложения с отраженным излуче-
нием составляет эффективное излучение с плотностью потока  

 0( ) ( ) ( ), .q P q P Rq P P S
      (1) 

Рассмотрим на сферической поверхно-
сти S  полости две произвольные точки N  
и P  (рис. 1). Элементарная площадка 

( )dS N  в окрестности точки N S  посылает 
на единичную площадку в окрестности точ-
ки P S  поток эффективного излучения  

                   *( ) ( ) ,NPdq P q N d                  (2) 

где NPd  — элементарный угловой коэф-
фициент [10], равный, в соответствии с за-
коном Ламберта [11] для распределения 
диффузного излучения по направлениям, 
определяемым углом N  между отрезком 
NP  и нормалью к площадке ( )dS N ,  

 2 2
0

cos cos ( )
= ( ) = ,

4
N P

NP
PN

dS N
d dS N

l r

 


 
 (3) 

где 0arccos ( / 2 )P N PNl r     — угол между нормалью в точке P  и 
отрезком PN  длиной .PNl  Формулы (1)–(3) справедливы для еди-

 

Рис. 1. Схема к опреде-
лению элементарного 
углового коэффициента 
     в шаровой полости 



Применение метода наименьших квадратов к задаче о переносе излучения… 

55 

ничной площадки в окрестности любой точки, принадлежащей по-
верхности .S  Поэтому с учетом данных формул после интегрирова-
ния по поверхности полости приходим к интегральному уравнению 
Фредгольма второго рода в виде [16]  

 * *
02

0

( ) ( ) ( ) ( ), , .
4 S

R
q P q N dS N q P P N S

r
   

   (4) 

Отсюда с учетом равенства (1) следует  

 *
2

0

1
( ) ( ) ( ) const,

4 S

q P q N dS N
r  
   (5) 

т. е. плотность потока падающего излучения в шаровой полости оди-
накова для всех точек ее поверхности и равна средней плотности по-
тока эффективного излучения. 

Умножив уравнение (4) на 2
0( ) / (4 )dS P r , после интегрирования 

по сферической поверхности S  при условии 1 constR     вместо 
равенства (5) получим  

 02
0

1
( ) ( ).

4 S

q q M dS M
r     (6) 

Количество энергии, теряемое путем излучения единицей площади 
поверхности твердого тела в единицу времени, называют плотностью 
потока результирующего излучения [17], равной 0 ,q q Aq    или, 

для шаровой полости с учетом формулы (6) для каждой точки ,P S   

4 40
0 0 02 2

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ).
4 4S S

q P q P q P dS P T P T P dS P
r r

 
     

    (7) 

Отсюда в соответствии с законом сохранения тепловой энергии 
при ее переносе излучением следует  

( ) ( ) 0.
S

q P dS P    

При этом суммарный тепловой поток, передаваемый через по-
лость, можно вычислить по формуле  

 
( ) | ( ) |

( ).
2

S

q P q P
Q dS P


 

 
  (8) 
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Температурное поле в окрестности шаровой полости. Примем, 
что шаровая полость радиусом 0r  находится в неограниченной обла-
сти, заполненной однородным материалом с коэффициентом тепло-
проводности .  В центре полости поместим начало сферической си-
стемы координат , ,r   , а на большом расстоянии r  от центра поло-
сти зададим вектор градиента температурного поля в этом материале, 
имеющий модуль G  и направленный вдоль оси, от которой происхо-
дит отсчет угловой координаты .  В этом случае при r   устано-
вившееся осесимметричное (не зависящее от угловой координаты  ) 
распределение температуры в этом материале будет описывать 
функция 0( , ) cosT r T Gr     , где 0T  — температура в плоскости 
при / 2.    Эта функция удовлетворяет уравнению Лапласа, кото-
рое в сферических координатах с учетом осевой симметрии имеет 
вид [17]  

 2
2 2

1 1
sin 0.

sin

T T
r

r rr r

                 
 (9) 

Наличие в однородном материале шаровой полости вызовет воз-
мущение температурного поля, описываемое также удовлетворяю-
щими уравнению (1) дополнительными слагаемыми [18]  

 
1

(cos ), const, 1, 2, ,j
j jj

B
P B j

r       (10) 

где (cos )jP   — ортогональные полиномы Лежандра степени j : 

1(cos ) cos ,P     2
2 (cos ) (3cos 1) / 2P     и для > 2j   

 1 2(cos ) (2 1) (cos )cos ( 1) (cos ).j j jjP j P j P          (11) 

Среднее по поверхности сферы значение любого из ортогональ-
ных полиномов Лежандра при > 0j  равно нулю, поскольку  

 
0

(cos )sin 0.jP d


     (12) 

Это свойство обеспечивает выполнение в полости условия тепло-
вого баланса, необходимого для существования установившегося 
распределения температуры на ее поверхности. Следует отметить, 
что уравнению (9) удовлетворяет также частное решение, пропорци-
ональное 1/ ,r  но оно противоречит физическому смыслу рассматри-
ваемой задачи, поскольку описывает либо только подвод теплоты пу-
тем теплопроводности к полости, либо только ее отвод из полости. 
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Температурное поле в окрестности шаровой полости должно 
удовлетворять на ее поверхности нелинейному граничному условию  

 
= 0

( , )
( ) ( ) 0, [0, ].

r r

T r
F q

r

 
        


  (13) 

Нелинейность этого условия вызвана тем, что плотность ( )q   
результирующего излучения, согласно формуле (7), зависит от чет-
вертой степени значений температуры * 0( ) ( , )T T r    на поверхности 
полости. В силу нелинейности условия (13) не удается в аналитиче-
ском виде найти коэффициенты jB  в дополнительных слагаемых, 

определяемых равенствами (10). Один из путей вычисления этих ко-
эффициентов состоит в применении метода наименьших квадратов, 
потребовав минимума интегральной квадратичной невязки условия 
(13), которую можно представить в виде  

 * 2

0

= ( ( )) sin ,F d


     (14) 

где 0 0( ) = ( ) / ( / )F F T r   . 
Запишем с учетом дополнительных слагаемых распределение на 

поверхности полости безразмерной температуры  

 *
*

0 =1

( )
( ) 1 cos (cos ),j j

j

T
T G B P

T


        (15) 

где 0 0/G Gr T  и 1
00/ ( )j

j jB B r T . После перехода в равенстве (7) от 

( )T P  к *( )T  , подстановки ( ) ( )q P q   в формулу (14) и выполнения 

интегрирования невязка *  будет функцией лишь безразмерных не-
известных коэффициентов jB . В соответствии с необходимым усло-

вием минимума этой невязки коэффициенты jB  должны удовлетво-

рять бесконечной системе нелинейных алгебраических уравнений 
* / 0jB   , = 1, 2, .j   Ясно, что полное решение такой системы 

недостижимо. Последовательно увеличивая выбор наибольшего зна-
чения j  и рассматривая таким образом усеченные системы уравне-
ний, можно вычислить конечное число безразмерных коэффициентов 

jB , контролируя при этом убывание значения * . В дальнейшем 

ограничимся рассмотрением первого приближения.  
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Первое приближение. Распределение температуры в окружаю-
щей шаровую полость среде в первом приближении с учетом соот-
ношения (10) представим равенством  

 2
0 1( , ) ( / ) cos .T r T Gr B r      (16) 

Прежде всего оценим границы возможных значений коэффициента 

1,B  рассматривая предельные случаи как отсутствия теплопереноса в 
шаровой полости, так и весьма интенсивного теплопереноса. Если вве-
сти эквивалентный коэффициент R  теплопроводности условной среды 
в полости, то отсутствию теплопереноса будет соответствовать значе-
ние = 0,R  а предельной интенсификации теплопереноса  .R    

В силу ограниченности температуры условной среды в полости при 
0r   уравнению (9) будет удовлетворять в этой среде распределение 

температуры [19]  

 0( , ) cos , const.T r T B r B        (17) 

В соотношения (16) и (17) входят два неизвестных коэффициента 

1B  и B , которые можно найти из условий непрерывности при 0r r  
распределения температуры и плотности теплового потока  

0 00 0( , ) ( , ); / | / | .r r R r rT r T r T r T r            

Отсюда с использованием формул (16) и (17) найдем  

3 3
1 0 1 0/ ; 2 / ( / ) ,RG B r B G B r B        

или 3 / (2 )RB G      и 3
1 0/ ( ) / (2 )R RB r G     . Таким обра-

зом, при 0R   получим 3
1 0/ / 2B r G , а при R    — 

3
1 0/ .B r G   В итоге для безразмерной величины 2

1 1 0 0/ ( )B B r T  
промежуток возможных значений соответствует полуинтервалу 
( , / 2]G G . С помощью эквивалентного коэффициента R  теплопро-
водности условной среды можно представить проходящий через ша-
ровую полость суммарный тепловой поток  

 
/2

2 2 2
0 0 00

0

3
2 | sin .

2
R R

R rr R
R

T G
Q r d r B r

r

   
       

      (18) 

В рассматриваемом первом приближении равенство (15) для без-
размерной формы распределения температуры на поверхности поло-
сти примет вид  
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 * 11 ( )cos .T G B     (19) 

Эта формула в сочетании с равенством (7) после вычисления ин-
теграла в правой части этого равенства позволяет записать  

4 2 40
1 1 1

0

( ) 1
( )= (1 ( )cos ) (1 2( ) ( ) ),

5

q r
q G B G B G B

T


          




  (20) 

где 3
0 0 0 /T r    . Тогда вместо формулы (13) с учетом равенства 

(16) получим  

2 4 41
1 1 1

( ) 2 1
cos 1 2( ) ( ) (1 ( )cos ) .

5

F G B
G B G B G B

 
          

 
 (21) 

Использовав формулу (21) при вычислении интеграла в соотно-
шении (14), из условия *

1/ = 0B   получим алгебраическое уравне-

ние седьмой степени относительно коэффициента 1B  в виде  

 
7

1
=0

= 0,n
n

n

a B  (22) 

где 7 5 3 2
0 = 4 / 25 12 /5 8 (1 1/ 2 / ) /3;a G G G G        6

1 = 28 / 25a G   
4 2 212 24 (1 2/ ) /3;G G      5 3

2 =84 /25 24 24 ;a G G G   4
3 = 28 /5a G   

224 8;G   3
4 = 28 / 5 12a G G ; 2

5 = 84 / 25 12 / 5a G  ; 6 = 28 / 25a G ; 

7 = 4 / 25.a  Отметим, что от параметра   зависят лишь коэффициен-

ты 0a  и 1a , причем 0 = 0a  при = 0G , т. е. отсутствие при r   гра-
диента температуры приводит к имеющему физический смысл реше-
нию уравнения (22) 1 = 0.B  

Анализ первого приближения. При достаточно малых значени-
ях радиуса 0r  шаровых пор и допустимых шкалой абсолютных тем-

ператур значений G  получим, что 0 0= / 1,G Gr T   а из установлен-

ного промежутка ( , / 2]G G  возможных значений 1B  следует 1| | 1.B   
Эти неравенства при количественном анализе первого приближения дают 
основание сначала в уравнении (22) и в его коэффициентах удержать 
лишь первые степени 1B  и ,G  а затем провести сравнение с результата-
ми расчетов с использованием уравнения (22). 

В линейном приближении из уравнения (22) найдем  

 
2

1 2

2
.

(2 )
B G

   


 
 (23) 
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Параметр   можно рассматривать (подобно эквивалентному ко-
эффициенту R  теплопроводности условной среды в шаровой поло-
сти) как величину, характеризующую интенсивность теплопереноса 
излучением. Если в качестве ориентира принять = 0,86 , 0 = 1600T  K, 

3
0 = 10r   м и = 0,1  Вт/(м К), то получим 2.   В предельных слу-

чаях при = 0  из равенства (23) следует 1 / 2,B G  а при    

имеем 1 ,B G  т. е. приходим к ранее установленным границам 

возможных значений безразмерного коэффициента 1.B  
На рис. 2 в полулогарифми-

ческих координатах приведены 
результаты расчетов по уравне-
нию (22) в виде зависимостей ко-
эффициента 1B  от параметра   
при различных значениях пара-
метра G  (сплошные, штриховые 
и штрихпунктирные кривые). 
Штрихпунктирная линия постро-
ена по формуле (23) при значе-
нии = 0,2G  и мало отличается от 
соответствующей штриховой 
кривой. При < 0,2G  по мере 

убывания параметра G  отличие 
результатов расчетов по форму-
лам (22) и (23) быстро уменьша-
ется (кривая, построенная по 

формуле (23) при =1G , в масштабе рис. 2 полностью совпадает с со-
ответствующей штрихпунктирной кривой).  

Представленные на этом рисунке зависимости позволяют с по-

мощью полученного ранее равенства 3
1 0/ = ( ) / (2 )R RB r G       

вычислить для условной среды в полости относительный эквива-
лентный коэффициент теплопроводности  

1

1

2
= = .R

R
G B

G B

 


 
 

При изменении угла   в промежутке от 0 до   плотность резуль-

тирующего излучения q  монотонно убывает, принимая в этом про-
межутке нулевое значение. Из соотношения (20) следует, что для 

рассматриваемого первого приближения значению = 0q  соответ-
ствует угол  

Рис. 2. Зависимость коэффициента 
1B от параметра   при различных

          значениях параметра G   
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2 4 1/4
1 1

*
1

(1 2( ) ( ) / 5) 1
arccos .

G B G B

G B

    
 


 

Поскольку 1 0B   при 
0,G   предельным переходом 

из этой формулы можно устано-
вить, что * / 2    при 0G  . 
На рис. 3 по этой формуле с ис-
пользованием результатов ко-
личественного анализа уравне-
ния (22) построены в полулога-
рифмических координатах зави-
симости угла *  от параметра 
G  для различных значений па-
раметра  . Формально при 

0   и =1G  предельное зна-
чение 1 = 0,5.B  

В этом случае * 1,1611  , 

что соответствует углу ≈66,53 . 
Таким образом, в полуинтервале *( ; / 2]   изменения угла   на 

сферической поверхности рассматриваемой шаровой полости в данном 
приближении возникает несоответствие между подводимым к этой по-
верхности путем теплопроводности и отводимым путем излучения теп-
ловыми потоками, т. е. происходит локальное нарушение закона сохра-
нения энергии. На рис. 4 в логарифмических координатах для различ-
ных значений параметра   приведены зависимости от параметра 
 

G  отношения 2
*cos    теп-

лового потока, подводимого к 
полости от окружающей среды 
путем теплопроводности через 
круговой пояс сферической по-
верхности при *( ; / 2),    ко 
всему подводимому к полости 
тепловому потоку. При 0   и 

=1G  значению 1 = 0,5B  соот-
ветствует предельное значение 

0,15866  ; его следует рас-
сматривать в качестве оценки 
наибольшей возможной инте-
гральной погрешности, которая 
может возникнуть при исполь-
зовании рассматриваемого пер-

 

Рис. 3. Зависимость угла *  от пара-
метра G  при различных значениях 
                 параметра   

 

Рис. 4. Зависимость параметра   от 

G  при различных значениях   
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вого приближения. При фиксированном значении параметра G  зна-
чение  достаточно быстро убывает по мере возрастания параметра 

 . Если к тому же учесть, что реальные значения параметра G  су-
щественно меньше единицы, то интегральную погрешность первого 
приближения можно считать сопоставимой с погрешностью исполь-
зуемых исходных данных.  

Заключение. Методом наименьших квадратов построено при-
ближенное решение нелинейной задачи теплопереноса путем излу-
чения в шаровой полости. Проведена оценка наибольшей возможной 
интегральной погрешности этого решения. Введено понятие эквива-
лентного коэффициента теплопроводности условной сплошной сре-
ды, заполняющей пору, что позволяет рассматривать материал с по-
ристой структурой как сплошное неоднородное твердое тело. Полу-
чена формула для вычисления этого коэффициента в первом при-
ближении. 

  
Работа выполнена по грантам НШ-1432.2014.8 и МК-6573.2015.8 про-

грамм Президента РФ государственной поддержки ведущих научных школ 
и молодых кандидатов наук, а также в рамках проекта 1712 в сфере науч-
ной деятельности в части государственного задания № 2014/104 Минобр-
науки РФ и государственного задания по проекту № 1.2640.2014.  
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Application of the least squares method to the problem  
of radiation transfer in a spherical cavity 

© V.S. Zarubin, O.V. Pugachev, I.Yu. Savelyeva 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

A lot of heat-shielding materials used in engineering have porous structure. When there 
is an intensive thermal exposure, there occurs a necessity to consider thermal energy 
transfer by means of radiation in pores of such materials. We contructed a mathematical 
model describing heat exchange by radiation in a spherical cavity. Its form can be 
considered as an average statistical form in relation to forms of closed pores in solid 
bodies. For the quantitative analysis of this model we used the method of the least 
squares and introduced an equivalent coefficient of thermal conductivity in the 
conditional continuous environment filling a pore. This allows to regard the material 
with porous structure as a continuous non-uniform solid body. 

Keywords: spherical cavity, mathematical model of radiative transfer, least squares 
method. 
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