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УДК 22.251 

Моделирование процесса взаимодействия  
ударной волны с цилиндрической оболочкой  

с учетом волны излучения 

© В.М. Дубровин, Т.А. Бутина, Н.С. Полякова 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Предложен метод расчета давления на поверхности упругой цилиндрической обо-
лочки в период погружения и обтекания ее ударной волной. Для слабых ударных 
волн проведена сравнительная оценка точного решения с имеющимися прибли-
женными решениями. Оценивалось влияние волны излучения вследствие деформа-
ции оболочки на величину давления на ее поверхности. 

Ключевые слова: падающая ударная волна, отраженная ударная волна, излученная 
ударная волна, избыточное давление, цилиндрическая оболочка, интегральное пре-
образование. 

Введение. Моделированию волновых процессов взаимодействия 
ударных волн с конструкциями посвящены многие исследования 
[1−15], в том числе при воздействии волн, вызванных электромаг-
нитными источниками [11], а также для конструкций из неклассиче-
ских, гибких материалов [4−6], обладающих высокими демпфирую-
щими свойствами.  

В процессе взаимодействия ударной волны с цилиндрической 
оболочкой на поверхности оболочки образуется давление различной 
интенсивности, которое следует определить для различных точек по-
верхности, а также оценить изменение давления во времени.  

Математическая модель процесса взаимодействия ударной 
волны с цилиндрической оболочкой. При решении задачи предпо-
лагают, что все сечения оболочки находятся в одинаковых условиях, 
и процесс взаимодействия для них протекает одинаково. Это позво-
ляет свести задачу к плоской, т. е. рассматривать задачу обтекания 
кольца. Кроме того, оболочку считают жесткой, т. е. влияние дефор-
мации оболочки на распределение давления на поверхности оболоч-
ки не учитывают. 

В общем случае при нормальном падении ударной волны на 
жесткую преграду давление на ее внешней поверхности за счет отра-
жения повышается. Значение этого давления может быть найдено по 
формуле [1−3] 

отр отр ф ,P K P    
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 фP  — избыточное давление во фронте 

ударной волны; 7,2ka   Па. 
Последнее соотношение показывает, что для слабых ударных 

волн типа акустических  ф 0P  отр 2K  , для сильных ударных 

волн  фP  отр 8.K   График зависимости от избыточного дав-

ления во фронте ударной волны представлен на рис. 1. 
Процесс взаимодействия ударной волны с цилиндрической обо-

лочкой условно можно разделить на два характерных периода: 1) пе-
риод погружения — от момента встречи оболочки с ударной волной 
до момента полного погружения в ударную волну; 2) период обтека-
ния — от момента полного погружения оболочки в ударную волну до 
конца фазы движения. 

Определение нагрузок на цилиндрическую оболочку при ее вза-
имодействии с ударной волной сводится к определению давления в 
каждой точке ее поверхности для различных моментов времени. 
Определение нагрузок на цилиндрическую оболочку в период по-
гружения является задачей в достаточной мере сложной. Ее решение 
в соответствии с имеющимися теоретическими исследованиями [4−7] 
может быть проведено следующим образом. Рассматривается волна 
заданной формы импульса, падающая на оболочку перпендикулярно 
ее образующей. Схема взаимодействия волны с оболочкой в плоской 
постановке представлена на рис. 2. Результирующее давление P  
 

  

Рис. 1. Зависимость коэффициента 
отражения ударной волны от избы-
точного давления во фронте волны 

Рис. 2. Схема взаимодействия 
ударной волны с оболочкой: 

1— поперечное сечение оболоч-
ки; 2 — падающая волна; 3 — 
отраженная волна 

в каждой точке цилиндрической поверхности складывается из давле-
ния в падающей волне P1 и давления в отраженной волне P2. Для 
определения этих давлений справедливы соотношения  
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где фD  — скорость распространения фронта ударной волны;     — 

плотность среды в ударной волне; R — радиус оболочки;  , ,r   , 

 , ,r    — потенциалы скоростей в падающей и отраженной 

волнах;   — угловая координата; фD t

R
   — безразмерный параметр 

времени; r — безразмерный радиус в долях R. 
В общем случае потенциал  , ,r   есть функция, определяемая 

видом падающей волны и контуром обтекаемого тела, т. е. является 
известной функцией. Потенциал  , ,r    должен удовлетворять 

волновому уравнению  

  
2 2 2

2 2 2 2

1 1
,

r rr r

      
  

  
 (2) 

граничным условиям 

 
1

0,
rr r 

 
 

 
 (3) 

условиям излучения на бесконечности и нулевым начальным услови-

ям 
0

0



  


. 

Для определения потенциала отраженной волны  , ,r    вос-

пользуемся его представлением на многомерной римановой поверх-
ности с углом  , непрерывно меняющимся в пределах      . 
Выполнив преобразования Фурье по   вида 

    2 iF f e d


  



     

и преобразования Лапласа по   вида 

   
0

,sF s f e d


     

получим уравнения (2) и граничные условия (3) следующего вида:  
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2

1
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 
 
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где s i     — комплексная переменная;   — вещественный пара-
метр;  * , , ,r s    * , ,r s   — изображение по Лапласу потенциа-

лов  , ,r   ,  , ,r   . 

Знак «*» означает, что для этих функций выполнено преобразо-
вание Фурье. 

Решение уравнения (4) с граничными условиями (5) и условиями 
изучения на бесконечности можно представить в виде  

1

1 *
* ,

r

K

s K r


 


  

 
 

где  K s  — функция Макдональда;      
2 sin

J s J s
K s  






; J  — 

функция Бесселя мнимого аргумента; J  — функция Бесселя, полу-
ченная из J заменой   на  . 

Соответствующее изображение для давления отражения на ци-
линдрической поверхности  

 
 

*
ф*

2

1

.
r

D K s
P

R K s r


 

 


 
 

Ввиду крайней сложности обращения последнего выражения, да-
ющего в пределах линейной теории точное распределение давления на 
жесткой цилиндрической оболочке, можно воспользоваться асимпто-
тическим представлением функции Макдональда при s  , т. е. рас-
сматривать начальный период взаимодействия. Тогда можно записать 

  
 
   

2
1 2 2 3 41 3 3

1 0 ,
2 2 8 8

K s
s s s s

K s
    



                  
  (6) 

где  40 S   — остаточный член разложения. 

В рассматриваемом случае изображение для давления отражения 
примет вид 

* * * * 2 * *
ф*

2 2 3 2 3
1

1 3 3
.

2 8 8 2
r

D
P

R r s r r r r rs s s s 

         
             
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Обратное преобразование Фурье от первых четырех слагаемых в 
последнем выражении может быть выполнено непосредственно, а 
для обращения последних двух членов необходимо иметь выражение 
для падающей волны. Если рассматривать ударную волну, в которой 
давление изменяется по закону 

ф( ) 1 ,
n

t
p t P



 
     

 

где   — период фазы сжатия в ударной волне; ф1,9n P  — пока-

затель степени бинома, зависящий от избыточного давления (для ма-
лых ),  потенциал скоростей можно записать в виде 

 ф cos 1

ф

( cos 1 ),rP R
e H r

D
  

    
 

 

где 
эф

t
 


 — постоянная, определяющая скорость падения давле-

ния за фронтом ударной волны; эф
2

1n
  


 — эффективное время, 

определяемое из условия равенства импульсов, действительной и 
приведенной эпюр давления; Н — функция Хевисайда. 

В рассматриваемом случае преобразования Лапласа и Фурье дают 

ф ф* cos

ф ф

2
( , ).

s s
sr iP P Re e

e d J s r
D s D s

 
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 
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        

Обратное преобразование Фурье, с учетом последнего выраже-
ния, позволяет получить следующую формулу для определения дав-
ления отражения на цилиндрической поверхности: 

ф
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ф ф2 2
2

1 3 3

2 8 8
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R r s r r rs s
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 
      

    
 

Интегралы в последнем выражении могут быть вычислены по 
методу перевала с использованием асимптотического разложения 
функций Бесселя при s  в виде [8, 9] 
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В рассматриваемом случае седловая точка 0 sinis   . В связи с 
тем что функция, стоящая под знаком интеграла, имеет точки ветвле-
ния is   , результат, получаемый по методу перевала, применим 

для углов 
2


  . После преобразования выражение для давления от-

ражения на поверхности оболочки может быть записано в виде 
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Пользуясь теоремой о свертке, оригинал этого выражения можно 
представить в виде  
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2 1 1 1
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 (7)  

Применение асимптотической формы для больших интервалов 
времени, соизмеримых с периодом обтекания ударной волной оболоч-
ки, не представляется возможным, так как задание отношения функ-
ций Макдональда в виде (6) не дает предельного перехода при 0.s   
Полученная формула (7) дает точную картину распределения давления 
на жестком цилиндре при 0.  Кроме того, она позволяет оценить 
точность приближенных решений для давления при 0.  В качестве 
такого приближенного решения можно рассматривать уравнение 

 ,ng
r r

  
  

 
 (8) 

где ng  — параметр, учитывающий влияние течения за фронтом удар-
ной волны. 

Изображение для потенциала   в этом случае с учетом гранич-

ных и начальных условий имеет вид 
1

1

n rs g r 


 

 
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На основании исходного уравнения (8) и теоремы о свертке 
функций можно записать 

  1ф ( )
2 1

0 1

.ng
n

r

D
P g e d

R r r


 



   
    

   
  (9) 

В этом случае при 0  решение совпадает с асимптотическим, 
так как   удовлетворяет соответствующему предельному переходу 
при 0s   в поле изображений. 

Результаты численных расчетов по разработанной модели. 
На рис. 3 приведены графики зависимости давления во фронтальной 
точке ( 0)   оболочки от параметра ,  полученные по асимптотиче-
ской формуле (7) и приближенной формуле (9). Здесь же для сравне-
ния приведена кривая, соответствующая известному решению Блейха 
[10]. Как видно из представленных графиков для   < 2,0, оба решения 
практически совпадают, после чего начинается их расхождение. Для
  > 2,0 можно пользоваться только формулой (7). 

 

 

Рис. 3. Зависимость давления 
во фронтальной точке оболочки 
от безразмерного момента вре- 
                    мени: 

1 — точное решение; 2 — решение 
при сохранении двух членов разло-
жения; 3 — приближенное решение; 
4 — приближенное решение Блейха 

 

Аналогично могут быть получены значения давления в любой 
точке цилиндрической поверхности. На рис. 4 приведены значения 
давления для различных участков цилиндрической оболочки. 

 

 

Рис. 4. Зависимость давления 
в различных точках оболочки 
от безразмерного параметра 
                времени: 

1 — 0   ; 2 — 60   ;  
3 — 80   ; 4 — 90   ;  
5 — 100   ; 6 — 120   ;  
7 — 140   ; 8 — 160   ;  
              9 — 180    



Моделирование процесса взаимодействия ударной волны с цилиндрической… 

45 

Полученные результаты справедливы для слабых ударных волн, 

когда ф

0

0,3,
P

P


  где P0 — давление в невозмущенной среде перед 

фронтом ударной волны. При 
ф

0

0,3
P

P


  полученное давление следу-

ет умножать на коэффициент Kотр.  
На основании полученных результатов может быть представлена 

следующая картина изменения давления на поверхности оболочки. 
При достижении фронтом ударной волны любой точки передней 

поверхности оболочки 
2

   
 

 давление в ней мгновенно возраста-

ет до максимального значения P = P1 + P2, а затем падает до давле-
ния обтекания по мере продвижения фронта ударной волны в тече-
ние времени до полного погружения оболочки в ударную волну. 
Для точек тыльной поверхности характерно наличие времени нарас-
тания давления до максимальной величины, вполне определенного 
для каждой точки этой поверхности оболочки. Время нарастания 
давления до максимума может быть определено по формуле

ф

2
cos .

R
t

D
   На рис 5, 6 представлены характерные зависимости  

 

Рис. 5. Характер изменения 
давления в точках передней 
поверхности оболочки при 
взаимодействии с ударной 
                   волной  

 
изменения давления в произвольной точке передней и тыльной по-
верхностей оболочки в течение времени ее обтекания ударной вол-
ной. На рис. 7 представлен характерный график изменения макси-
мального избыточного давления по периметру оболочки.  

Модель учета излучения волн, воздействующих на оболочку 
в аэродинамическом потоке. В период обтекания определение 
нагрузок на оболочку может быть получено на основании обычной 
формулы аэродинамики 
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Рис. 6. Изменение давления 
в точках передней поверх-
ности оболочки при взаи-
модействии с ударной вол- 
                 ной

2( )
( ) ,

2

U t
P P Р t P 


     

где P  — давление в невозмущенной среде; ( )Р t  — местное давле-
ние в ударной волне; P  — коэффициент давления; U(t) — скорость 
воздуха в ударной волне. 

При стационарном обтекании 
оболочки потоком несжимаемой 
воздушной массы изменение P  
может быть представлено в виде 

21 4sin .P     
Как показано в [11], коэффици-

енты давления, вычисляемые по 
формуле (10) и полученные экспе-
риментальным путем с помощью 
продувок в аэродинамических тру-
бах для передней поверхности обо-
лочки, достаточно хорошо согласу-
ются. Для тыльной части поверхно-

сти наблюдается некоторое расхождение результатов, объясняемое 
отрывом струи воздушного потока от поверхности оболочки вблизи 
миделевого сечения и образованием вихрей. Тем не менее это рас-
хождение, согласно [12], не ведет к существенным погрешностям в 
определении коэффициента давления. Кроме того, для давления 

0,8P  кг/см2 сжимаемость воздуха можно не учитывать при 
определении нагрузок на оболочку. При больших давлениях сжима-
емость воздуха может быть учтена введением поправочного коэф-
фициента .  Тогда скоростной напор с учетом сжимаемости воздуха  

1 (1 ).q q    

Зависимость   от числа Маха приведена на рис. 8. 

Рис. 7. Изменение максималь-
ного давления по периметру
                   оболочки 
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При взаимодействии с ударной 
волной оболочка вследствие упругих 
деформаций начинает излучать вол-
ну. Обозначив через 1  и 3P  соответ-
ственно потенциал скоростей и дав-
ление в излученной волне, по анало-
гии с (1) и (2) будем иметь  

2
1

3
1

Ф

r

D
P

R 

 
 


; 

 
2 2

1 1 1 1
2 2 2 2

1 1

r rr r

     
  

  
. (10) 

Для отыскания 1( , , )r    имеем граничные условия на поверхно-
сти оболочки вида 

  1

ф 1

1
,

r

w

D r 

 
 

 
 (11) 

где ( , , )w r    — прогиб оболочки, положительной внутрь. 

Для определения 3Р  используем асимптотическое представление 

для 1 . 
Проведя преобразования по Лапласу и Фурье, аналогичные пре-

образованиям для потенциала ( , , )r   , получим изображение для 
давления излучения  

 
2
ф* * * * * * *

3 2 2

1 3 3
.

2 8 28

D
P sw w w w w w

R s ss s

          
 

 (12) 

Для последнего выражения легко может быть выполнено обратное 
преобразование Лапласа, однако обратное преобразование Фурье для 
двух последних слагаемых в общем случае при неизвестной функции 

( , )w    выполнить нельзя. Формула (12) совместно с формулой (6) 
может быть использована в таком виде, если для решения уравнений 
движения оболочки преобразование Лапласа и Фурье известны. 

Если прогиб ( , )w    определяется в виде разложения по периоди-

ческим функциям типа sin  и cos ,  то может быть использован ме-
тод разделения переменных. Для форм колебаний, близких к осесим-

 

Рис. 8. Зависимость поправоч-
ного коэффициента от числа 
                      Маха 
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метричным, согласно [7], в формуле (12) можно пренебречь послед-
ними двумя слагаемыми. Тогда давление излучения можно записать 
в виде  

       
2
ф*

3 1 1 1 1

0 0

1 3 3
, , , , .

2 8 8

D
Р w w w d w d

R

  
                

 
    (13) 

Если предположить, что каждый кольцевой элемент оболочки из-
лучает цилиндрическую волну, то для 1( , , )r   можно приближенно 
записать уравнение типа (8). Как было отмечено ранее, это уравнение 
при 0,5ng   есть асимптотическая форма волнового уравнения для 
осесимметричного движения. Решение этого уравнения при гранич-
ных условиях (11) может быть представлено в виде 

  
 1

12
ф 2

3 1 1

0

1 1

2 4
i

D
Р w w w e d

R

   
       

  
 .  (14) 

Последнее выражение можно представить в форме  

 
 1

12
ф 2

3 1 1

0

.i
D

Р w e d
R

  
       

Если в асимптотическом разложении (6) использовать только 
один член, то для 3Р  получим формулу 

 
2
ф

3 .
D w

Р
R


   (15) 

Сравнение, приведенное для давления излучения, показывает, что 
формулу (15) можно использовать для малых   ( 0,1).   При боль-
ших   эта формула может привести к неверным результатам. То же 
самое верно для формул (12) и (13). Формула (14) справедлива для 
форм прогиба оболочки, близких к осесимметричным. Однако для 
больших интервалов взаимодействия оболочки с ударной волной 
осесимметричная форма колебаний играет основную роль, поэтому 
целесообразно использовать эту формулу для оценки давления излу-
чения на поверхности оболочки. Для малых   функция прогибов 
сильно изменяется в окружном направлении и основную роль играют 
высшие гармоники колебаний, в связи с чем целесообразно исполь-
зовать асимптотическую формулу (12). 
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Представляет интерес величина дав-
ления излучения по сравнению с давле-
нием в ударной волне. На рис. 9 приве-
дены графики изменения давления 3 ,Р  
выраженного в процентах по отношению 

ф ,Р  для различных оболочек. Как сле-

дует из полученных графиков, отклоне-
ние давления излучения составляет на 
основном участке примерно 5 % от фР  

и лишь для очень слабых волн (типа 
акустических) давление изучения сопо-
ставимо с избыточным давлением удар-
ной волны. Кроме того, давление излу-
чения зависит от геометрии оболочки и 
уменьшается с увеличением .R   

Заключение. Нагрузка на цилиндри-
ческую оболочку при ее взаимодействии с ударной волной может 
быть представлена как всестороннее сжимающее давление, имеющее 
следующие особенности: 

 неравномерно по контуру поперечного сечения оболочки; 
 мгновенно нарастает при соприкосновении с ударной волной 

для всех точек передней поверхности оболочки; 
 имеет конечную скорость нарастания при погружении оболочки 

в ударную волну для всех точек тыльной поверхности оболочки. 
Для процесса взаимодействия ударной волны с цилиндрической 

оболочкой характерны два периода: 1) период погружения — от мо-
мента встречи оболочки с ударной волной до момента полного по-
гружения в нее; 2) период обтекания — от момента полного погру-
жения оболочки в ударную волну до конца фазы движения. 

Давление на поверхности оболочки складывается из давления в 
падающей волне, давления в отраженной волне, давления в излучен-
ной волне. При этом давление излучения играет существенную роль 
лишь для слабых ударных волн. 
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Modeling of the process of interaction of the shock wave 
with cylindrical shell considering wave radiation effect  

© V.M. Dubrovin, T.A. Butina, N.S. Polyakova 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The objective of this research is to examine the shock wave with cylindrical shell and to 
propose a method for calculating its dynamic stability under axial compressive time-
varying load. For weak shock waves we conducted comparative analysis of the exact solu-
tion and the existing approximate solutions. We evaluated the wave radiation effect after 
the shell deformation. The case of linearly varying load was considered as an example. 

Keywords: incident shock wave, reflected shock wave, radiated shock wave, overpres-
sure, cylindrical shell, integral transformation, asymptotic representation. 
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