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Описан ряд новых точных решений с простым, обобщенным и функциональным 
разделениями переменных одномерных нелинейных реакционно-диффузионных 
уравнений с запаздывающим аргументом и переменными коэффициентами пере-
носа. Все представленные уравнения содержат одну, две или три произвольные 
функции одного аргумента. Решения с обобщенным разделением переменных нахо-

дят в виде 
=1

= ( ) ( )
N

n nn
u x t  , где функции ( )n x , ( )n t  определяют в ходе ана-

лиза с использованием новой модификации метода функциональных связей. Неко-
торые из результатов обобщены на случай нелинейных реакционно-диффузионных 
уравнений с переменным запаздыванием = ( ).t   Также представлены точные 

решения более сложных трехмерных реакционно-диффузионных уравнений с за-
паздыванием. Большинство полученных решений содержат свободные параметры 
и могут быть использованы для решения некоторых задач, а также для тестиро-
вания приближенных аналитических и численных методов решения нелинейных 
уравнений в частных производных с запаздыванием.  

Ключевые слова: реакционно-диффузионные уравнения с запаздыванием, перемен-
ные коэффициенты переноса, точные решения, решения с обобщенным разделени-
ем переменных, решения с функциональным разделением переменных, переменное 
запаздывание, нелинейные уравнения в частных производных с запаздыванием. 

Введение. Классы рассматриваемых уравнений. Нелинейные 
реакционно-диффузионные уравнения и системы уравнений с запаз-
дыванием встречаются в биологии, биофизике, биохимии, химии, 
медицине, теории управления, теории климатических моделей, эко-
логии, экономике и многих других научных областях работы [1–12]. 
Следует отметить, что подобные уравнения возникают также в мате-
матической теории искусственных нейронных сетей [13–22]. 

Сначала рассмотрим нелинейные реакционно-диффузионные 
уравнения с запаздыванием вида 
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 = ( , ), = ( , ).t xxu ku F u w w u x t    (1) 

В биохимических, биологических, физико-химических, экологи-
ческих и других системах скорость изменения искомой величины 
обычно зависит не только от текущего состояния системы в фикси-
рованный момент времени, но и от всей предыстории или конкретно-
го момента в прошлом. Последний случай моделируется уравнения-
ми вида (1), где кинетическая функция F  (скорость химической  
реакции) зависит как от = ( , )u u x t , так и от той же величины с запаз-
дыванием = ( , )w u x t   . При ( , ) = ( )F u w f w  запаздывание с физиче-
ской точки зрения означает, что процессы массо- и теплопереноса в 
локально неравновесных средах обладают свойством инерции: си-
стема реагирует на воздействие не мгновенно, в момент его прило-
жения t , что соответствует классическому случаю локально-равно-
весных сред, а на время запаздывания   позже. 

В реакционно-диффузионных уравнениях, а также других нели-
нейных уравнениях в частных производных (УрЧП) запаздывание   
может быть связано с множеством различных факторов в зависимо-
сти от области приложения. Например, в биологии и биомеханике 
запаздывание может быть следствием конечности скорости распро-
странения нейронного импульса в живых тканях. В задачах о разви-
тии заболеваний в медицине время запаздывания определяется инку-
бационным периодом, после которого болезнь начинает проявляться 
(в некоторых случаях необходимо учитывать время, через которое 
инфицированный организм становится заразным). В популяционной 
динамике запаздывание связано с периодом беременности или созре-
вания. В теории управления запаздывание обычно является результа-
том конечности скорости обработки сигнала и скорости технологиче-
ских процессов. 

Значительное количество точных решений уравнения теплопро-
водности с нелинейным источником, которое является частным слу-
чаем уравнения (1) без запаздывания при ( , ) = ( )F u w f u , приведено, 
например, в работах [23–29]. В справочнике [30] дан широкий обзор 
точных решений рассматриваемого класса нелинейных уравнений; 
там же описано большое число точных решений с обобщенным и 
функциональным разделением переменных для нелинейных реакци-
онно-диффузионных систем двух связанных уравнений без запазды-
вания. 

Наличие запаздывания в уравнениях вида (1) существенно 
усложняет их исследование по сравнению с нелинейными УрЧП без 
запаздывания. 

В общем случае уравнение (1) допускает решения типа бегущей 
волны = ( )u u x t  . Такие решения рассмотрены во многих рабо-
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тах, например, [2–7]. В [11] проведен полный групповой анализ не-
линейного уравнения с запаздыванием, где были найдены четыре 
уравнения вида (1), которые допускают инвариантные решения (два 
из них имеют вырожденные решения, линейные по x ). В работах [12, 
31–36] описан ряд точных решений с простым и обобщенным разде-
лением переменных уравнения (1), а также других точных решений 
этого уравнения и решений более сложных нелинейных реакционно-
диффузионных уравнений с зависящим от времени запаздыванием 

= ( )t   и систем двух связанных уравнений с запаздыванием. 
В данной статье рассмотрены более сложные, чем (1), нелиней-

ные реакционно-диффузионные уравнения с запаздыванием 

 = [ ( ) ] ( , ), = ( , ),t x xu G u u F u w w u x t    (2) 

где коэффициент переноса (диффузии) G  зависит от искомой функ-
ции u . 

Для частного случая уравнения (2) без запаздывания при 
( , ) = ( )F u w f u , что соответствует нелинейному уравнению теплопро-

водности, получено довольно много точных решений [23, 24, 26–30]. 
В работе [37] предложен точный метод, основанный на использо-

вании инвариантных подпространств нелинейных обыкновенных 
дифференциальных операторов, которые определяют вид рассматри-
ваемых уравнений [29]. Этот метод позволил получить несколько 
точных решений нелинейных реакционно-диффузионных уравнений 
с запаздыванием вида (2). Область применения метода в основном 
ограничена нелинейными УрЧП с запаздыванием, содержащими 
произвольные параметры (но не произвольные функции). 

В статье предложен модифицированный метод функциональных 
связей, который обобщает метод, изложенный в работе [32], и явля-
ется более эффективным, чем в [37]. Предложенный метод позволяет 
строить точные решения нелинейных УрЧП с запаздыванием, содер-
жащих произвольные функции. Далее описан ряд новых точных ре-
шений с простым, обобщенным и функциональным разделениями 
переменных одномерных уравнений вида (2), полученных с помо-
щью предлагаемого метода, а также более сложных трехмерных ре-
акционно-диффузионных уравнений с запаздывающим аргументом. 
Некоторые из результатов обобщены на случай нелинейных реакци-
онно-диффузионных уравнений с переменным запаздыванием 

= ( ).t   Все рассмотренные уравнения содержат одну, две или три 
произвольных функции одного аргумента. 

Решения с обобщенным и функциональным разделением пе-
ременных. Далее термин «точное решение» в отношении нелиней-
ных уравнений в частных производных с запаздыванием будем ис-
пользовать в следующих случаях [31–33]: 
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(i) решение выражается в элементарных функциях или пред-
ставляется в замкнутом виде с использованием определенных и не-
определенных интегралов; 

(ii) решение выражается через решения обыкновенных диффе-
ренциальных уравнений или обыкновенных дифференциальных 
уравнений с запаздыванием (или систем таких уравнений); 

(iii) решение выражается через решения линейных уравнений с 
частными производными; 

(iv) допускаются комбинации случаев (i)–(iii). 
Это определение обобщает понятие точного решения, используе-

мого в [30] в отношении нелинейных уравнений с частными произ-
водными без запаздывания. 

Замечание 1. О методах решения и различных приложениях ли-
нейных и нелинейных обыкновенных дифференциальных уравнений 
с запаздывающим аргументом, которые гораздо проще нелинейных 
уравнений в частных производных с запаздыванием, см., например, 
работы [38–43]. 

Замечание 2. Ряд точных решений некоторых нелинейных УрЧП 
с запаздыванием (а также систем таких уравнений), отличных от (1) и 
(2), приведен, например, в [12, 44–46]. 

Замечание 3. Численные методы решения нелинейных реакцион-
но-диффузионных уравнений с запаздыванием и других нелинейных 
УрЧП (систем УрЧП), а также связанные с запаздыванием дополни-
тельные трудности, обсуждаются в работах [49–52]. Приведенные в 
настоящей статье точные решения могут быть использованы в каче-
стве тестовых задач для независимой проверки корректности и оцен-
ки точности численных методов решения нелинейных УрЧП с запаз-
дыванием, а также систем таких уравнений.  

В данной работе рассмотрим решения с обобщенным разделением 
переменных вида 

 
=1

= ( ) ( ).
N

n n
n

u x t   (3) 

Функции ( )n x  и ( )n t  определяются в ходе анализа выражения, 
полученного в результате подстановки решения (3) в уравнение (2).  

В решении (3) чаще всего встречаются следующие функции
( ):n x  

 
( ) = ( = 0,1,2); ( ) = exp( );

( ) = cos( ); ( ) = sin( ),

m
n n n

n n n n

x x m x x

x x x x

  
   

 (4) 

где n  и n  — искомые параметры. Функции ( )n t  часто выбирают 
аналогичным образом. 
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Замечание 4. Для нелинейных уравнений в частных производных 
без запаздывания, например в работах [28–30], подробно изложены 
различные модификации метода обобщенного разделения перемен-
ных, основанные на поиске решений вида (3). В этих исследованиях 
также приведено много нелинейных УрЧП и систем УрЧП, допуска-
ющих обобщенное разделение переменных. 

Помимо решений с обобщенным разделением переменных, в ста-
тье рассмотрены также решения с функциональным разделением пе-
ременных вида 

 
=1

= ( ), = ( ) ( ).
N

n n
n

u U z z x t   (5) 

В частном случае ( ) =U z z  решение (5) совпадает с (3). 
Замечание 5. Решения вида (5) для различных нелинейных урав-

нений в частных производных без запаздывания можно, найти в [28–
30, 53–58]. 

Уравнения, содержащие произвольные функции. Метод функ-
циональных связей. Для нелинейных уравнений в частных производ-
ных с запаздыванием, содержащих произвольные функции, прямое 
применение метода обобщенного разделения переменных оказывается 
неэффективным. Целесообразнее исследовать такие уравнения с по-
мощью модификации метода функциональных связей [32]. 

Для определенности будем рассматривать нелинейные реакционно-
диффузионные уравнения с запаздыванием достаточно общего вида: 

 1 2= [ ( ) ] ( ) ( ) ( ), = ( , ),t x xu G u u H u H u f z z z u w   (6) 

где ( )f z  — произвольная функция одного аргумента; функции 
( ),G u  1( )H u , 2 ( )H u  определяют в ходе анализа. Функция = ( , )z z u w  

должна удовлетворять некоторым условиям (см. далее). 
Будем искать решения с обобщенным разделением переменных 

вида (3) (обычно при = 1N  или = 2N ); простейшие случаи соответ-
ствуют решениям в виде произведения = ( ) ( )u x t   или суммы 

= ( ) ( )u x t   . 
Для определения вида аргумента = ( , )z z u w  произвольной функ-

ции ( )f z  используем метод функциональных связей, предполагаю-
щий поиск точных решений вида (3), удовлетворяющих одной из 
двух функциональных связей [32]:  

 ( , ) = ( ), = ( , );z u w p x w u x t    (7) 

 ( , ) = ( ), = ( , ).z u w q t w u x t    (8) 
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Эти связи представляют собой разностные уравнения по t , в кото-
рых x  играет роль свободного параметра. Функции ( )p x  и ( )q t  неяв-
но зависят от x  и t  (выражаются через ( )n x  и ( )n t  соответствен-
но) и определяются в ходе анализа уравнения (7) или (8) с учетом (3). 
Следует подчеркнуть, что получать общие решения уравнения (7) или 
(8) не обязательно, обычно достаточно знать частное решение. 

Всякое частное решение разностного уравнения (7) или (8), где u  
задается формулой (3), определяет допустимый вид точных решений. 
Окончательный вид точного решения определяется после подстанов-
ки выражения (3) в нелинейное УрЧП с запаздыванием (6); получен-
ное таким образом уравнение затем анализируется, чтобы найти под-
ходящий вид функций ( ),G u  1( ),H u  2 ( ).H u  

Связи (7) и (8) в дальнейшем будем называть соответственно 
функциональной связью первого рода и функциональной связью вто-
рого рода. 

Метод функциональных связей может быть использован также для 
поиска решений с функциональным разделением переменных вида (5); 
таким способом были получены многие из указанных ниже решений. 

Замечание 6. Далее рассмотрим более сложные, чем (6), нелиней-
ные реакционно-диффузионные уравнения с запаздыванием  

 1 2 3= ( ( ) ) ( ) ( ) ( ) ( ) ( ), = ( , ),t x xu G u u H u H u f z H u g z z z u w    (9) 

где ( )f z  и ( )g z  — произвольные функции одного аргумента (можно 
исследовать модифицированное уравнение (9), где вместо 3( )H u  
стоит 3( )H w ). В статье также приведены точные решения некоторых 
других уравнений.  

Рассмотрены одномерные нелинейные реакционно-диффузион-
ные уравнения с запаздыванием вида (2), содержащие произвольные 
функции 1( )f z  и 2( )g z , приведен список их точных решений с про-
стым, обобщенным и функциональным разделением переменных. 
Промежуточные результаты, иллюстрирующие применение метода 
функциональных связей, указаны только для первых пяти уравнений. 
Все полученные решения легко могут быть проверены прямой под-
становкой в исходные уравнения. 

Замечание 7. Некоторые результаты обобщены на случай трех-
мерных реакционно-диффузионных уравнений с запаздыванием и 
нелинейных реакционно-диффузионных уравнений с переменным 
запаздыванием = ( )t  . 

Одномерные реакционно-диффузионные уравнения, содер-
жащие одну произвольную функцию одного аргумента. Функции 

( )G u , 1( )H u , 2 ( )H u  в рассматриваемых далее уравнениях (1)–(4), 



Нелинейные реакционно-диффузионные уравнения с запаздыванием… 

9 

имеющих вид (6), находят в степенном виде, а те же функции в урав-
нениях (5)–(7) — в виде экспонент или констант. 

Уравнение 1. Рассмотрим уравнение (6) вида  

 = ( ) ( / ).k
t x xu a u u uf w u  (10) 

Уравнение (10) содержит произвольную функцию ( )f z , где 
= /z w u . В этом случае функциональная связь второго рода (8) 

имеет вид  

 / = ( ), = ( , ).w u q t w u x t    (11) 

Легко видеть, что разностному уравнению (11) удовлетворяет 
решение в виде произведения функций разных аргументов 

 = ( ) ( ),u x t   (12) 

откуда следует, что ( ) = ( ) / ( )q t t t    . 
Подставляя решение (12) в УрЧП с запаздыванием (10) и разде-

ляя переменные, для функций ( )x  и ( )t  приходим к следующим 
обыкновенным дифференциальным уравнениям (ОДУ) без запазды-
вания и с запаздыванием: 

 ( ) = ,k
x xa b     (13) 

 1( ) = ( ) ( ) ( ( ) / ( )),kt b t t f t t         (14) 

где b  — произвольная постоянная. 
При = 0b  решение уравнения (13) принимает вид  

1/( 1)
1 2

1 2

( ) при 1;
=

exp( ) при 1,

kC x C k

C C x k

    
  

 

где 1C , 2C  — произвольные постоянные. 
При = 2k    и = 0k   уравнение (13) имеет частное решение 

1/2
2/= , = .

2 ( 2)

k

k bk
Ax A

a k

 
   

 

Замечание 8. Уравнение (10) допускает также более сложное ре-
шение вида  
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2/= ( ) ( ), = ln( ),ku x C t x C        

где C  и   — произвольные постоянные, а функция ( )   удовлетво-
ряет ОДУ с запаздыванием  

2

2 1 2 1
2

(3 4)
( ) = ( ) ( ) ( ) ( )

2( 2)
( )[ ( )] ( ) ( ) ( ( ) / ( )).

k k

k k

k
a

k

k
k f

k
 

               


                   


 

Уравнение 2. Рассмотрим уравнение  

  (15) 

которое обобщает уравнение (10). В этом случае функциональная 
связь второго рода (8) имеет вид (11), ей удовлетворяет решение с 
разделяющимися переменными (12), а функция ( )x  имеет специ-
альный вид.  

1) Уравнение (15) при ( 1) > 0b k   допускает решение в виде 
произведения функций разных аргументов 

 1/( 1)
1 2= [ cos( ) sin( )] ( ), = ( 1) / ,ku C x C x t b k a       (16) 

где ( )t  — функция, описываемая ОДУ с запаздыванием  

 ( ) = ( ) ( ( ) / ( )).t t f t t       (17) 

Частное решение уравнения (17) имеет вид  

 ( ) = ,tt Ae  (18) 

где A  — произвольная постоянная;   — корень алгебраического 

(трансцендентного) уравнения ( ) = 0f e  . 
2) Уравнение (15) при ( 1) < 0b k   допускает решение в виде 

произведения функций разных аргументов 

     1/( 1)
1 2= [ exp( ) exp( )] ( ), = ( 1) / ,ku C x C x t b k a        (19) 

где функция ( )t  описывается обыкновенным дифференциальным 
уравнением с запаздыванием (17). 

,)/()(= 1 k
xx

k
t buuwufuuau
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3) При = 1k   уравнение (15) также допускает решение в виде 
произведения  

 2
1 2= exp ( ),

2

b
u C x C x t

a
     

 (20) 

где функция ( )t  удовлетворяет обыкновенному дифференциально-
му уравнению с запаздыванием (17). 

Уравнение 3. Рассмотрим уравнение  

 1 1= ( ) ( ), = 1,k k k k
t x xu a u u b u f u w k        (21) 

которое содержит произвольную функцию ( )f z , где 1 1= k kz u w  . 
В этом случае функциональная связь второго рода (8) имеет вид  

 1 1 = ( ), = ( , ).k ku w q t w u x t     (22) 

Разностному уравнению (22) удовлетворяет решение с функцио-
нальным разделением переменных  

 1/( 1)= [ ( ) ( )] ,ku x t     (23) 

откуда следует, что ( ) = ( ) ( )q t t t     . Подставляя (23) в УрЧП с 
запаздыванием (21), получаем следующие результаты. 

1) Уравнение (21) допускает решение с функциональным разде-
лением переменных  

 
1/( 1)

2
1 2

( 1)
= ,

2

k
b k

u At x C x C
a

     
 (24) 

где A  — корень алгебраического (трансцендентного) уравнения 
= ( 1) ( )A k f A  . 

2) Уравнение (21) допускает более сложное решение с функцио-
нальным разделением переменных  

 
1/( 1)

2
1 2

( 1)
= ( ) ,

2

k
b k

u t x C x C
a

        (25) 

где ( )t  — функция, описываемая ОДУ с запаздыванием,  

 ( ) = ( 1) ( ( ) ( )).t k f t t        (26) 
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Уравнение 4. Рассмотрим уравнение  

 1/2 1/2 1/2 1/2= ( ) ( ),t x xu a u u bu f u w     (27) 

в котором ( )f z  — произвольная функция, где 1/2 1/2=z u w . В этом 
случае функциональная связь первого рода (7) имеет вид  

 1/2 1/2 = ( ), = ( , ).u w p x w u x t    (28) 

Разностному уравнению (28) удовлетворяет функция  

 2= ( ( ) ( )) ,u x t x    (29) 

откуда ( ) = ( )p x x . 
Поставляя (29) в УрЧП с запаздыванием (27), для функций ( )x  

и ( )x  получаем систему ОДУ  

22 2 = 0;

.2 2 ( ) = 0

xx

xx

a b

a b f

     

       

 

Частное решение этой системы имеет вид  

21 1
= ; = ,

2 4 2

b
b f x Ax B

a

       
 

где A , B  — произвольные постоянные. 
Уравнение 5. Рассмотрим уравнение  

 = ( ) ( ).u
t x xu a e u f u w    (30) 

Уравнение (30) содержит произвольную функцию ( )f z , где 
=z u w . Функциональная связь второго рода (8) имеет вид  

 = ( ), = ( , ).u w q t w u x t    (31) 

Разностному уравнению (31) удовлетворяет решение в виде сум-
мы функций разных аргументов 

 = ( ) ( ),u x t    (32) 

откуда следует, что ( ) = ( ) ( )q t t t     . 
Поставляя (32) в УрЧП с запаздыванием (30), получим решение в 

виде суммы функций разных аргументов: 
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 21
= ln( ) ( ),u Ax Bx C t   


 (33) 

где A , B , C  — произвольные постоянные; функция ( )t  описыва-
ется ОДУ с запаздыванием  

 ( )( ) = 2 ( / ) ( ( ) ( )).tt a A e f t t         (34) 

Замечание 9. Уравнение (30) допускает также более сложное ре-
шение вида  

 
2

= ln( ) ( ), = ln( ),u x C t x C      


 (35) 

где C  и   — произвольные постоянные; функция ( )   удовлетворя-
ет ОДУ с запаздыванием  

 ( ) 2 2 22
( ) = 3 ( ) ( ( )) ( ) ( ( ) ( )).ae f                           

 

Уравнение 6. Рассмотрим уравнение  

 = ( ) ( ) ,u u
t x xu a e u f u w be     (36) 

которое обобщает уравнение (30). 
1) При > 0b  уравнение (36) допускает решение в виде суммы  

 1 2
1

= ln( cos( ) sin( )) ( ), = / ,u C x C x t b a      


 (37) 

где 1C  и 2C  — произвольные постоянные; ( )t  — функция, описы-
ваемая ОДУ с запаздыванием  

 ( ) = ( ( ) ( )).t f t t       (38) 

Уравнение (38) имеет частное решение  

= ,A kt   

где A  — произвольная постоянная; k  — корень алгебраического 
(трансцендентного) уравнения ( ) = 0k f k  . 

2) При < 0b  уравнение (36) допускает решение в виде суммы  

 1 2
1

= ln( exp( ) exp( )) ( ), = / ,u C x C x t b a       


 (39) 

где функция ( )t  описывается обыкновенным дифференциальным 
уравнением с запаздыванием (38). 
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Уравнение 7. Рассмотрим уравнение  

 = ( ) ( ).u u u w
t x xu a e u b e f e e       (40) 

1) Уравнение (40) допускает решение с функциональным разде-
лением переменных:  

 2
1 2

1
= ln ,

2

b
u At x C x C

a

     
 (41) 

где A  — корень алгебраического (трансцендентного) уравнения 
( ) = 0A f A   . 

2) Уравнение (40) допускает более сложное решение с функцио-
нальным разделением переменных  

 2
1 2

1
= ln ( ) ,

2

b
u t x C x C

a

      
 (42) 

где функция ( )t  описывается ОДУ с запаздыванием  

 ( ) = ( ( ) ( )).t f t t        (43) 

Уравнение 8. Уравнение  

 = (( ln ) ) ln ( / )t x xu a u b u cu u uf w u    (44) 

допускает решения в виде произведения  

 = exp( ) ( ), = / ,u x t c a    (45) 

где функция ( )t  описывается ОДУ с запаздыванием  

 2( ) = ( ) ( ) ( ) ( ( ) / ( )).t a b t t f t t           (46) 

Уравнение 9. Рассмотрим уравнение  

 
1

= ( ( ) ) ( ( ) ( ) ),
( )

t x xu uf u u af u bf w c
f u

  


 (47) 

где ( )f u  — произвольная функция, а штрих обозначает производ-
ную по .u  

Уравнение (47) допускает решение с функциональным разделе-
нием переменных, которое можно записать в неявном виде,  

 ( ) = ( ) ( ),f u t x t    (48) 

где ( )t  и ( )t  — функции, удовлетворяющие ОДУ с запаздыванием  
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 ( ) = ( ) ( ),t a t b t       (49) 

 2( ) = ( ) ( ) ( ).t a t b t c t          (50) 

Уравнение 10. Уравнение  

 
2

= ( ) ) ( ) ( ( ) ( )
( )

t x xu uf u u a b u af u bf w c
f u

æ ö÷ç ¢ + + + + + ÷ç ÷÷ç ¢è ø
 (51) 

допускает решение с функциональным разделением переменных, ко-
торое можно записать в неявном виде:  

 21
2( ) = ( ) ( ) ( ),f u a b x t x t       (52) 

где ( )t  и ( )t  — функции, удовлетворяющие ОДУ с запаздыванием 

 ( ) = 2 ( ) 2 ( ),t b t b t        (53) 

 2( ) = 2 ( ) 2 ( ) 2 ( ).t a t b t c t          (54) 

Уравнение (53) имеет частное решение  

 1 2( ) = ,tt C e C   (55) 

где  — корень трансцендентного уравнения 2 (1 ) = 0b e   . 
Уравнение 11. Уравнение  

     1 2 3= ( ( ) ) ( ) ( ) ( ( ) ( ))
( )

t x x
b

u f u u a f u a f w a f u f w
f u

    


 (56) 

допускает решение с функциональным разделением переменных, ко-
торое можно записать в неявном виде:  

 3

1 2

( ) = ( ) ,t a
f u e x

a a
  


 (57) 

где  — корень трансцендентного уравнения,  

 = (1 )b e  ; (58) 

( )x  — функция, описываемая линейным ОДУ с постоянными ко-
эффициентами 

 1 2( ) = 0.xx a a e     (59) 
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Уравнение 12. Уравнение  

   1 2 3
1

= ( ( ) ) [ ( ) ( )] ( ( ) ( ) )
( )

t x xu f u u a f u f w b f u b f w b
f u

    


 (60) 

допускает решение с функциональным разделением переменных в 
неявном виде:  

 3

1 2

( ) = ( ) .t b
f u e x

b b
  


 (61) 

Здесь  — корень трансцендентного уравнения  

 1 2 = 0,b b e    (62) 

а функция ( )x  описывается линейным ОДУ с постоянными коэф-
фициентами 

 (1 ) = 0.xx a e     (63) 

Уравнение 13. Рассмотрим уравнение  

 

1 2

3 1 2 3

= ( ( ) ) ( ) ( )

1
( ( ) ( ) ),

( )

t x xu f u u a f u a f w

a b f u b f w b
f u

  

   


 (64) 

которое обобщает два предыдущих уравнения. 
Пусть выполняется условие  

 1 2 3 3 1 2( ) = ( )a a b a b b  . (65) 

Тогда имеется решение с функциональным разделением пере-
менных, которое можно представить в неявном виде:  

 ( ) = ( ) .tf u e x c    (66) 
Здесь  

3 3
1 2 1 2

1 2 1 2

= при = или = при =
a b

c a a c b b
a a b b

    
 

; (67) 

 — корень трансцендентного уравнения  

 1 2 = 0;b b e    (68) 
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функция ( )x  удовлетворяет линейному ОДУ с постоянными коэф-
фициентами 

 1 2( ) = 0.xx a a e     (69) 

Уравнение 14. Рассмотрим уравнение  

 
1 2 3

1
= ( ( ) ) ( ( ) ( ) ),

( )

( ) = ( ) ( ( ) ) ,

t x xu h u u c f u c f w c
f u

h u f u af u b du

  


 
 (70) 

где ( )f u  — произвольная функция, а штрих обозначает производ-
ную по .u  

Уравнение (70) допускает решение с функциональным разделе-
нием переменных в неявном виде  

 ( ) = ( ) ( )f u t x t   , (71) 

где функции ( )t  и ( )t  удовлетворяют ОДУ с запаздыванием:  

3
1 2

2
1 2 3

( ) = ( ) ( ) ( ),

( ) = ( )( ( ) ) ( ) ( ) .

t a t c t c t

t t a t b c t c t c

       

          
 

Одномерные реакционно-диффузионные уравнения, содер-
жащие две произвольные функции одного аргумента.  

 

Уравнение 15. Рассмотрим уравнение  

 1= ( ) ( / ) ( / ),k k
t x xu a u u uf w u u g w u   (72) 

где ( )f z  и ( )g z  — произвольные функции. 
Уравнение (72) допускает решения в виде произведения вида  

 = ( ),tu e x   (73) 

где   — корень алгебраического (трансцендентного) уравнения  

= ( )f e ; 

( )x  — функция, описываемая ОДУ  

1( ) ( ) = 0.k k
x xa g e       
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При = 1k    подстановка 1= k   приводит к линейному ОДУ 
второго порядка с постоянными коэффициентами. При = 1k   следу-
ет использовать подстановку = ln .   

Уравнение 16. Уравнение  

 1/2 1/2 1/2 1/2 1/2 1/2= ( ) ( ) ( )t x xu a u u f u w u g u w      (74) 

допускает решение с обобщенным разделением переменных:  

 2= [ ( ) ( )] ,u x t x    (75) 

где функции ( )x  и ( )x  описываются системой ОДУ 

22 ( ) 2 = 0;

2 ( ) 2 ( ) = 0.
xx

xx

a g

a g f

     
       

 

Система допускает частное решение  

21
= ; = ( ) ,

4
k f k x Ax B

a
       

где A  и B  — произвольные постоянные; константа k  находится из 
алгебраического (трансцендентного) уравнения ( ) 2 = 0g k k  . 

Уравнение 17. Уравнение  

 1 1 1 1= ( ) ( ) ( ), = 1k k k k k k
t x xu a u u f u w u g u w k          , (76) 

допускает решение с обобщенным разделением переменных  

 2 1/( 1)
1 2

( 1)
= ( ) ; = ( ),

2
k k

u At Bx C x C B f A
a

 
      (77) 

где 1C  и 2C  — произвольные постоянные; константа A  определяет-
ся из решения алгебраического (трансцендентного) уравнения 

( 1) ( ) = 0A k g A   . 
Уравнение 18. Уравнения вида  

 = ( ) ( ) ( )u u
t x xu a e u f u w e g u w      (78) 

допускают решение в виде суммы функций разных аргументов: 

 = ( ),u t x    (79) 

где   — корень алгебраического (трансцендентного) уравнения,  
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= ( );f   

функция ( )x  описывается ОДУ  

( ) ( ) = 0,x xa e g e     

которое подстановкой = e  приводится к линейному ОДУ второго 
порядка с постоянными коэффициентами. 

Уравнение 19. Уравнение  

 = ( ) ( ) ( )u u w u u w
t x xu a e u f e e e g e e          (80) 

допускает решение с обобщенным разделением переменных:  

 2
1 2

1
= ln( ), = ( ),

2
u At Bx C x C B f A

a


    


 (81) 

где константу A  находят из алгебраического (трансцендентного) 
уравнения ( ) = 0A g A   . 

Уравнение 20. Рассмотрим уравнение  

 
1

= ( ( ) ) ( ( ) ( )),
( )

t x xu a g u u b f g u g w
g u

  


 (82) 

где ( )g u  и ( )f z  — произвольные функции, а штрих обозначает про-
изводную по аргументу. 

Уравнение (82) допускает решение с функциональным разделе-
нием переменных в неявном виде:  

 2
1 2( ) = ( ) .

2

b
g u t x C x C

a
     (83) 

Функция ( )t  описывается ОДУ с запаздыванием (38), которое 
имеет частное решение ( ) =t At , где A  — корень алгебраического 
(трансцендентного) уравнения ( ) = 0A f A  . 

Уравнение 21. Рассмотрим уравнение  

 
( )

= ( ( ) ) ( ) ( ( ) / ( )),
( )

t x x
g u

u a g u u bg u f g w g u
g u

 


 (84) 

где ( )g u  и ( )f z  — произвольные функции, а штрих обозначает про-
изводную по аргументу. 

1) При > 0ab  уравнение (84) допускает решение с функциональ-
ным разделением переменных в неявном виде  
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 1 2( ) = [ cos( ) sin( )] ( ), = / .g u C x C x t b a      (85) 

Функция ( )t  описывается ОДУ с запаздыванием (17); это урав-

нение имеет частное решение ( ) = tt e , где   — корень алгебраи-

ческого (трансцендентного) уравнения ( ) = 0f e  . 
2) При < 0ab  уравнение (84) допускает решение с функциональ-

ным разделением переменных в неявном виде:  

 1 2( ) = [ exp( ) exp( )] ( ), = /g u C x C x t b a      , (86) 

где функция ( )t  описывается ОДУ с запаздыванием (17). 
3) При = 0b  уравнение (84) допускает решение с функциональ-

ным разделением переменных в неявном виде  

1 2( ) = ( ) ( ),g u C x C t   

а функция ( )t  описывается ОДУ с запаздыванием (17). 
Уравнение 22. Рассмотрим уравнение  

   
1 2

1 1
= ( ( ) ) ( ( ) ( )) ( ( ) ( )),

( ) ( )

( ) = ( ) ( ( ) ) ,

t x xu h u u c g u c g w f g u g w
g u g u

h u g u ag u b du

   
 

 
 (87) 

где ( )g u  и ( )f z  — произвольные функции; штрих обозначает про-
изводную по .u  

Уравнение (87) допускает решения с функциональным разделе-
нием переменных в неявном виде  

 1 2( ) = ( ), = ( ) / ,g u kx t k c c a     (88) 

где функция ( )t  описывается ОДУ с запаздыванием  

2
2 2( ) = ( ) ( ) ( ( ) ( )).t c t bk c t f t t              

Одномерные реакционно-диффузионные уравнения, содер-
жащие три произвольные функции одного аргумента.  

 

Уравнение 23. Рассмотрим уравнение  

     
1

= ( ( ) ) ( ( ) ( )) ( ( ) ( )),
( )

t x xu a f u u g f u f w h f u f w
f u

   


 (89) 

где ( )f u , ( )g z , ( )h z  — произвольные функции; штрих обозначает 
производную. 

Уравнение (89) допускает решение с функциональным разделе-
нием переменных в неявном виде:  
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 2
1 2

( )
( ) = ,

2

g A
f u At x C x C

a


    (90) 

где константа A  — корень алгебраического (трансцендентного) 
уравнения ( ) = 0A h A  . 

Уравнение 24. Рассмотрим уравнение  

 
( )

= ( ( ) ) ( ) ( ( ) / ( )) ( ( ) / ( )),
( )

t x x
f u

u a f u u f u g f w f u h f w f u
f u

 


 (91) 

где ( )f u , ( )g z , ( )h z  — произвольные функции. 
Пусть   — корень алгебраического (трансцендентного) уравнения  

( ) = 0.h e   

1) При ( ) > 0ag e  уравнение (91) допускает решение с функци-
ональным разделением переменных в неявном виде:  

 1 2( ) = [ cos( ) sin( )] , = ( ) / ,tf u C x C x e g e a      (92) 

2) При ( ) < 0ag e  уравнение (91) допускает решение с функци-
ональным разделением переменных в неявном виде:  

 1 2( ) = [ exp( ) exp( )] , = ( ) /tf u C x C x e g e a      . (93) 

3) При ( ) = 0g e  уравнение (91) допускает решение с функцио-
нальным разделением переменных в неявном виде:  

1 2( ) = ( ) .tf u C x C e  

Уравнение 25. Уравнение  

2 ( ) 1
= ( ( ) ) ( ( ) ( ))

( ) ( ) ( )
t x x

d g u
u g u u h f u f w

f u du f u f u

        
 

допускает решения с функциональным разделением переменных в 
неявном виде:  

( ) = ( ),f u x t    

где функция ( )t  — решение ОДУ с запаздыванием:  

( ) = ( ( ) ( )).t h t t       
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Трехмерные реакционно-диффузионные уравнения, содер-
жащие произвольную функцию одного аргумента. Будем рассмат-
ривать многомерные обобщения некоторых одномерных уравнений и 
их решений, представленных ранее. Далее используем следующие 
обозначения: 1= ( , ) ( , , , )nu u t u x x tx  , = ( , )w u t  x . Двух- и трех-
мерные уравнения соответствуют = 2n  и = 3.n  

Уравнение 26. Рассмотрим уравнение  

 1= div( ) ( / ) .k k
tu a u u uf w u bu     (94) 

1) При = 1k    уравнение (94) допускает решения в виде произве-
дения вида  

 1/( 1)= ( ) ( ),ku t   x  (95) 

где функция ( )t  описывается обыкновенным дифференциальным 
уравнением с запаздыванием (17), а функция 1( ) = ( , , )nx x x   удо-
влетворяет уравнению Гельмгольца  

 
( 1)

= 0,
b k

a


    (96) 

в котором   — оператор Лапласа. 
2) При = 1k   уравнение (94) допускает решения в виде произве-

дения вида  

 = ( ) ln ( )u t  x , (97) 

где функция ( )t  описывается обыкновенным дифференциальным 
уравнением с запаздыванием (17), а функция ( ) x  удовлетворяет 
уравнению Пуассона  

 ( / ) = 0.b a   (98) 

Уравнение 27. Уравнение  

 1 1= div( ) ( ), = 1,k k k k
tu a u u b u f u w k         (99) 

допускает решение с функциональным разделением переменных:  

 1/( 1)= ( ( ) ( )) ,ku t   x  (100) 

в котором функция ( )t  описывается обыкновенным дифференци-
альным уравнением с запаздыванием (26), а функция ( ) x  удовле-
творяет уравнению Пуассона  

 
( 1)

= 0.
b k

a


   (101) 
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Уравнение 28. Уравнение  

 1/2 1/2 1/2 1/2= div( ) ( )tu a u u bu f u w      (102) 

допускает решения с обобщенным разделением переменных вида  

 2= ( ( ) ( )) ,u t x x  (103) 

где = ( )  x  и = ( )  x  — функции, удовлетворяющие уравнениям 
в частных производных,  

 22 2 = 0,a b      (104) 

 2 2 ( ) = 0.a b f        (105) 

Уравнение (104) имеет частное решение 
1

= = const
2

b . В этом 

случае уравнение (105) переходит в уравнение Пуассона  

1 1
= 0.

2 2
a f b

    
 

 

Уравнение 29. Рассмотрим уравнение  

 = div( ) ( ) ,u u
tu a e u f u w be      (106) 

которое обобщает уравнение (36). 
Уравнение (106) допускает решение в виде суммы  

 
1

= ( ) ln ( ),u t  


x  (107) 

в котором функция ( )t  описывается обыкновенным дифференци-
альным уравнением с запаздыванием (38), а функция ( ) x  удовле-
творяет уравнению Гельмгольца  

 ( / ) = 0.b a     (108) 

Уравнение 30. Уравнение  

 = div( ) ( )u u u w
tu a e u b e f e e        (109) 

допускает решение с функциональным разделением переменных  
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1

= ln( ( ) ( )),u t  


x  (110) 

где функция ( )t  описывается обыкновенным дифференциальным 
уравнением с запаздыванием (43), функция ( ) x  удовлетворяет 
уравнению Пуассона  
 ( / ) = 0.b a    (111) 

Уравнение 31. Рассмотрим уравнение  

 
1

= div( ( ) ) ( ( ) ( ) ),
( )

tu uf u u af u bf w c
f u

   


 (112) 

где ( )f u  — произвольная функция; штрих обозначает производную 
по .u  

Уравнение (112) допускает решение с функциональным разделе-
нием переменных в неявном виде:  

 
=1

( ) = ( ) ( )
n

k k
k

f u t x t   , (113) 

где функции ( )k t  и ( )t  описываются обыкновенными дифферен-
циальными уравнениями с запаздыванием  

 ( ) = ( ) ( ), = 1, , ,k k kt a t b t k n        (114) 

 2

=1

( ) = ( ) ( ) ( ).
n

k
k

t a t b t c t           (115) 

Уравнение 32. Уравнение  

   1 2 3= div( ( ) ) ( ) ( ) ( ( ) ( ))
( )

t
b

u f u u a f u a f w a f u f w
f u

     


 (116) 

допускает решение с функциональным разделением переменных в 
неявном виде:  

 3

1 2

( ) = ( ) ,t a
f u e

a a
  


x  (117) 

где  — корень трансцендентного уравнения,  

 = (1 ),b e   (118) 
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а функция ( ) x  описывается уравнением Гельмгольца  

 1 2( ) = 0.a a e     (119) 

Уравнение 33. Уравнение  

   1 2 3
1

=div( ( ) ) ( ( ) ( )) ( ( ) ( ) )
( )

tu f u u a f u f w b f u b f w b
f u

     


 (120) 

допускает решение с функциональным разделением переменных в 
неявном виде:  

 3

1 2

( ) = ( ) ,t b
f u e

b b
  


x  (121) 

где  — корень трансцендентного уравнения,  

 1 2 0,b b e     (122) 

а ( )x  — функция, описываемая уравнением Гельмгольца,  

 (1 ) = 0.a e     (123) 

Трехмерные реакционно-диффузионные уравнения, содержа-
щие две произвольные функции одного аргумента.  

 

Уравнение 34. Уравнение  

 1/2 1/2 1/2 1/2 1/2 1/2= div( ) ( ) ( )tu a u u f u w u g u w       (124) 

допускает решения с обобщенным разделением переменных вида  

 2= ( ( ) ( )) ,u u t  x x  (125) 

где = ( )  x  и = ( )  x  — функции, описываемые уравнениями в 
частных производных,  

 22 ( ) 2 = 0,a g     (126) 

 2 ( ) 2 ( ) = 0.a g f        (127) 

Уравнение (126) имеет частное решение 0= = const  , где 0  — 
корень алгебраического (трансцендентного) уравнения 0( )g  

02 = 0  . В этом случае уравнение (127) переходит в уравнение 
Пуассона  

0
1

( ) = 0.
2

a f    

Уравнение 35. Уравнение  

1 1 1 1= div( ) ( ) ( ), = 1,k k k k k k
tu a u u f u w u g u w k            (128) 
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допускает решения с обобщенным разделением переменных:  

 1/( 1)= [ ( )] ku At   x , (129) 

где константа A  определяется из решения алгебраического (транс-
цендентного) уравнения ( 1) ( ) = 0A k g A   , а функция ( ) x  описы-
вается уравнением Пуассона  

 ( 1) ( ) = 0.a k f A     (130) 

Уравнение 36. Рассмотрим уравнение  

 = div( ) ( ) ( ),u u
tu a e u f u w e g u w       (131) 

где ( )f z  и ( )g z  — произвольные функции. 
Уравнение (131) допускает решение в виде суммы  

 
1

= ln ( ),u t  


x  (132) 

где   — корень алгебраического (трансцендентного) уравнения 
( ) = 0f   ; ( ) x  — функция, удовлетворяющая уравнению Гельм-

гольца  
 ( ) = 0.a g      (133) 

Уравнение 37. Уравнение  

 = div( ) ( ) ( )u u w u u w
tu a e u f e e e g e e           (134) 

допускает решение с обобщенным разделением переменных:  

 
1

= ln( ( )),u At  


x  (135) 

где константа A  определяется из решения алгебраического (транс-
цендентного) уравнения ( ) = 0A g A   , а функция ( ) x  описывается 
уравнением Пуассона  

 ( ) = 0.a f A     (136) 

Уравнение 38. Рассмотрим уравнение  

 
1

= div( ( ) ) ( ( ) ( )),
( )

tu a g u u b f g u g w
g u

   


 (137) 

где ( )g u  и ( )f z  — произвольные функции; штрих обозначает про-
изводную. 

Уравнение (137) допускает решение с функциональным разделе-
нием переменных в неявном виде:  
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 ( ) = ( ) ( ).g u t  x  (138) 

Функция ( )t  описывается обыкновенным дифференциальным 
уравнением с запаздыванием (38), а функция ( ) x  удовлетворяет 
уравнению Пуассона (98). 

Уравнение 39. Рассмотрим уравнение  

 
( )

= div( ( ) ) ( ) ( ( ) / ( )),
( )

t
g u

u a g u u bg u f g w g u
g u

  


 (139) 

где ( )g u  и ( )f z  — произвольные функции. 
Уравнение (139) допускает решение с функциональным разделе-

нием переменных в неявном виде:  

 ( ) = ( ) ( ).g u t x  (140) 

Функция ( )t  описывается обыкновенным дифференциальным 
уравнением с запаздыванием (17), функция ( ) x  удовлетворяет 
уравнению Гельмгольца  

 = 0.a b    (141) 

Трехмерные реакционно-диффузионные уравнения, содержа-
щие три произвольные функции одного аргумента.  

 

Уравнение 40. Рассмотрим уравнение  

   
1

= div( ( ) ) ( ( ) ( )) ( ( ) ( )),
( )

tu a f u u g f u f w h f u f w
f u

    


 (142) 

где ( )f u , ( )g z , ( )h z  — произвольные функции. 
Уравнение (142) допускает решение с функциональным разделе-

нием переменных в неявном виде:  

 ( ) = ( ),f u At   x  (143) 

где A  — корень алгебраического (трансцендентного) уравнения 
( ) = 0A h A  ; ( ) x  — функция, описываемая уравнением Пуассона,  

 ( ) = 0.a g A    (144) 

Уравнение 41. Рассмотрим уравнение  

( )
= div9 ( ) ) ( ) ( ( ) / ( )) ( ( ) / ( )),

( )
t

f u
u a f u u f u g f w f u h f w f u

f u
  


 (145) 

где ( )f u , ( )g z , ( )h z  — произвольные функции. 



А.Д. Полянин, А.И. Журов 

28 

Уравнение (145) допускает решение с функциональным разделе-
нием переменных в неявном виде:  

 ( ) = ( ) ,tf u e x  (146) 

где   — корень алгебраического (трансцендентного) уравнения 

( ) = 0h e  ; ( ) x  — функция, удовлетворяющая уравнению Гельм-
гольца,  

 ( ) = 0.a g e    (147) 

Реакционно-диффузионные уравнения с переменным запаз-
дыванием. Большая часть представленных выше результатов приме-
нима и к нелинейным реакционно-диффузионным уравнениям с за-
висящим от времени запаздыванием = ( )t  . В табл. 1 приведены 
некоторые уравнения, содержащие произвольные функции, а также 
их решения. В искомых функциях, зависящих от t  и t   , входящих 
в определяющие обыкновенные дифференциальные уравнения с за-
паздыванием, необходимо положить = ( )t  . 

Таблица 1 

Точные решения реакционно-диффузионного уравнения с переменным 
запаздыванием = ( ( ) ) ( , ),t x xu G u u F u w  где = ( , )w u t  x  и = ( )t   

Вид реакционно-диффузионных уравнений 
с переменным запаздыванием 

Вид точных 
решений 

Определя-
ющее 

уравнение 

= ( ) ( / )k
t x xu a u u uf w u  ( ) ( )u x t    (13), (14) 

1= ( ) ( / )k k
t x xu a u u uf w u bu    

( ) ( ),u x t  
см. (16), (19), (20)

(17) 

1 1= ( ) ( )k k k k
t x xu a u u b u f u w      

1/( 1)( ( ) ( )) ,ku x t      
см. (25)

(26) 

= ( ) ( )u
t x xu a e u f u w    

( ) ( ),u x t  
см. (33)

(34) 

= ( ) ( )u u
t x xu a e u f u w be     

( ) ( ),u x t  
см. (37), (39)

(38) 

= ( ) ( )u u u w
t x xu a e u b e f e e       

1 ln( ( ) ( )),u x t    

см. (42)
(43) 

= (( ln ) ) ln ( / )t x xu a u b u cu u uf w u     exp / ( )u c a x t    (46) 
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Окончание табл. 1 

Вид реакционно-диффузионных уравнений 
с переменным запаздыванием 

Вид точных 
решений 

Определя-
ющее 

уравнение 

1
( )= ( ( ) ) ( ( ) ( ) )t x x f uu uf u u af u bf w c    ( ) ( ) ( )f u t x t    (49), (50) 

1
( )= ( ( ) ) ( ( ) ( ))t x x g uu a g u u b f g u g w    

( ) ( ) ( ),g u x t  
см. (83)

(38) 

( )
( )= ( ( ) ) ( ) ( ( ) / ( ))g u

t x x g uu a g u u bg u f g u g w 
( ) ( ) ( ),g u x t  
см. (85), (86)

(17) 

 

Пример. Рассмотрим первое уравнение в табл. 1. Полагая = ( )t   
в определяющем уравнении (14) для ( )t , получаем ОДУ с запазды-
ванием  

1( ) = ( ) ( ) ( ( ) / ( )), = ( ).kt b t t f t t t           

В табл. 2 приведены некоторые трехмерные реакционно-
диффузионные уравнения с переменным запаздыванием = ( )t  , а 
также их точные решения. 

Таблица 2 

Точные решения реакционно-диффузионного уравнения с переменным 
запаздыванием = div( ( ) ) ( , ),tu G u u F u w   где = ( , )w u t  x  и = ( )t   

Вид реакционно-диффузионных уравнений  
с переменным запаздыванием 

Вид точных решений 
Опреде-
ляющее 
уравнение 

1= div( ) ( / )k k
tu a u u uf w u bu     1/( 1)= ( ) ( )ku t   x  (17), (96) 

1 1= div( ) ( )k k k k
tu a u u b u f u w       1/( 1)=[ ( ) ( )] ku t  x (26), (101) 

= div( ) ( )u u
tu a e u f u w be      1= ( ) ln ( )u t    x  (38), (108) 

= div( ) ( )u u u w
tu a e u b e f e e        1= ln( ( ) ( ))u t  x  (43), (111) 

1
'( )= div( ( ) ) ( ( ) ( ))t g uu a g u u b f g u g w     ( ) = ( ) ( )g u t  x  (38), (98) 

( )
'( )= div( ( ) ) ( ) ( ( ) / ( ))g u

t g uu a g u u bg u f g w g w   ( ) = ( ) ( )g u t x  (17), (141) 
 

Заключение. В статье описана новая модификация метода функци-
ональных связей. Представлены точные решения одномерных нелиней-
ных реакционно-диффузионных уравнений с запаздыванием вида  

= ( ( ) ) ( , ),t x xu G u u F u w  

где = ( , )u u x t ; = ( , )w u x t   ,   — время запаздывания. Все рассмот-
ренные уравнения содержат одну, две или три произвольные функ-
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ции одного аргумента. Описан ряд решений с обобщенным разделе-

нием переменных вида 
=1

= ( ) ( )
N

n nn
u x t  , а также решений с 

функциональным разделением переменных вида = ( )u U z , где 

=1
= ( ) ( )

N
n nn

z x t  . Рассмотрены трехмерные реакционно-диффу-

зионные уравнения с запаздыванием вида  

= div( ( ) ) ( , )tu G u u F u w   

и их точные решения. Некоторые из результатов распространяются и 
на нелинейные реакционно-диффузионные уравнения с переменным 
запаздыванием = ( )t  , где ( )t  — произвольная функция. Большин-
ство полученных решений содержит свободные параметры и может 
использоваться для решения некоторых задач и тестирования при-
ближенных аналитических и численных методов решения нелиней-
ных УрЧП с запаздыванием. 
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We present a number of new simple separable, generalized separable, and functional separa-
ble solutions to one-dimensional nonlinear delay reaction-diffusion equations with varying 
transfer coefficients of the form = [ ( ) ] ( , ),t x xu G u u F u w where = ( , )w u x t  and 

= ( , ),w u x t    with   denoting the delay time. All of the equations considered contain one, 

two, or three arbitrary functions of a single argument. The generalized separable solutions 

are sought in the form 
=1

= ( ) ( )
N

n nn
u x t  , with ( )n x  and ( )n t  to be determined in the 

analysis using a new modification of the functional constraints method. Some of the results 
are extended to nonlinear delay reaction-diffusion equations with time-varying delay 

= ( ).t   We also present exact solutions to more complex, three-dimensional delay reaction-

diffusion equations of the form = div[ ( ) ] ( , ).tu G u u F u w  Most of the solutions obtained 

involve free parameters, so they may be suitable for solving certain problems as well as test-
ing approximate analytical and numerical methods for non-linear delay PDEs. 

Keywords: delay reaction-diffusion equations, varying transfer coefficients, exact solu-
tions, generalized separable solutions, functional separable solutions, time-varying de-
lay, nonlinear delay partial differential equations. 
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