
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Басараб М. А. Численно-аналитический метод решения
двумерных задач естественной конвекции в замкнутых
полостях. Математическое моделирование и численные методы,
2014, №1 (1), c. 18-35

Источник: https://mmcm.bmstu.ru/articles/6/

Параметры загрузки:

IP: 216.73.216.214

28.01.2026 23:43:12



 

18 

УДК 519.63:532.5 
 

Численно-аналитический метод решения  

двумерных задач естественной конвекции  

в замкнутых полостях 

© М.А. Басараб 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Предложен метод численно-аналитического решения системы уравнений в част-
ных производных, описывающих естественную тепловую конвекцию в двумерной 
полости сложной формы с произвольными граничными условиями (метод PGRM). 
Новый подход основан на комбинации методов Петрова – Галеркина и R-функций 
(функций Рвачева) и дает возможность получить априори удовлетворяющие гра-
ничным условиям представления функций температуры, вихря и тока в виде раз-
ложений по некоторым базисам. Согласованный выбор базисов позволяет естест-
венным образом аппроксимировать краевые условия для функции тока. 
Нестационарные задачи конвекции решаются путем совместного использования 
PGRM и метода прямых (метод Роте). 
 
Ключевые слова: естественная конвекция, метод R-функций, метод Петрова – 
Галеркина. 

 
 Введение. Решение задач естественной конвекции в объемах 

произвольного сечения представляет большой интерес благодаря 
большому числу практических приложений. Современный аппарат 
вычислительной гидродинамики (англ. CFD — Computational Fluid 
Dynamics) в основном базируется на использовании конечно-
разностных (англ. FDM — Finite-Difference Method) [1–5] и конечно-
элементных схем (англ. FEM — Finite-Element Method) [6]. Их основ-
ными недостатками являются громоздкое представление сеточного 
решения в области сложной геометрии и трудности, связанные с ап-
проксимацией краевых условий. Для функции вихря краевые условия 
вообще не заданы в явном виде и требуют использования специаль-
ных подходов для их постановки (условия Томá или Вудса). Большой 
обзор современных сеточных технологий в решении задач механики 
жидкости и газа приведен в [7], где описаны подходы к конструиро-
ванию структурированных и неструктурированных сеток для облас-
тей произвольной геометрии. 

Сложности дискретизации двух- и трехмерных задач математи-
ческой физики можно преодолеть с помощью сравнительно нового 
класса вычислительных схем: бессеточных методов (англ. meshless 
или meshfree methods) [8]. Достаточно полный обзор таких подходов 
применительно к задачам гидродинамики представлен в [9]. 

Одним из наиболее интуитивно простых и эффективных бессе-

точных методов решения краевых задач в областях сложной геомет-

рии является метод R-функций (RFM) [10, 11]. В частности, в [12] 
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было предложено использовать RFM для решения задачи гидродина-

мики несжимаемой жидкости. В [13] для решения стационарных за-

дач конвекции-диффузии в замкнутых полостях сложной формы 

предложено совместно использовать проекционный метод Петрова – 

Галеркина и метод R-функций — PGRM (англ. Petrov–Galerkin–

Rvachev Method), что позволяет априори удовлетворять заданным 

граничным условиям. Согласованный выбор базисных функций дает 

возможность не только точно удовлетворить краевым условиям зада-

чи для функций температуры, вихря и тока, но и избежать решения 

уравнения для функции тока, что существенно упрощает схему ре-

шения системы уравнений свободной конвекции. В настоящей работе 

метод PGRM рассматривается с более общих позиций и обобщается 

на случай решения нестационарных задач конвекции-диффузии. 

Данный подход проиллюстрирован на примере решения задач тепло-

вой конвекции в двумерной области в терминах функций температу-

ры, вихря и тока. Особое внимание также уделено аспектам числен-

ной реализации и возможностям оптимизации процесса вычислений. 
Математическая постановка задачи. Рассмотрим двумерную 

стационарную математическую модель свободной конвекции внутри 

замкнутой полости ,  заданную в безразмерном виде [4]: 
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В модели (1) используются следующие безразмерные физические  
и геометрические параметры: 

 горизонтальная и вертикальная скорости 

/ , / ;U uL V L   v  

 горизонтальная и вертикальная координаты 
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 температура 
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 функция внутреннего источника теплоты 

 
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 функция вихря ;  

 функция тока ;  

 число Прандтля  

Pr ;pc    

 число Грасгофа 

  3 2Gr ,h cg T T L     

где ,u v  — горизонтальная и вертикальная составляющие скорости, м/с; 

  — кинематическая вязкость, м
2
/с;  x, y — горизонтальная и верти-

кальная координаты, м; L — характерный размер области  , м;   

T — температура, К; ,hT  
cT  — максимальная и минимальная темпера-

тура, К;   Q — объемная мощность источника тепла, Вт/м
3
; 

0  — плот-

ность газа, кг/м
3
; 

pc  — теплоемкость газа при постоянном давле- 

нии, Дж/(кг К);   — динамическая вязкость, Па  с;   — теплопровод-

ность, Вт/(м К); g — вертикальное ускорение (ускорение свободного 

падения), м/с
2
;   — температурный коэффициент объемного расшире-

ния газа, К
–1

.   
Задача (1) есть модель естественной конвекции по Буссинеску, в 

которой не учитывается влияние вязкого и компрессионного нагрева, 
а все газовые постоянные, кроме плотности, полагаются не завися-
щими от температуры. 

На границе области   зададим смешанные краевые условия: 
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  (2) 

где 1 2,   — известные функции, определенные на участках границы 

1 2,   соответственно ( 1 2    , 1 2   ); n — 

вектор внешней нормали к  . Таким образом, на участке 1  зада-

на температура, а на участке 2  — тепловой поток. Для вихревой 

функции   краевые условия аппроксимируются разложением функ-

ции тока в ряд Тейлора в окрестности границы   [1, 4]. 
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Основные понятия теории R-функций. Функция ( , )z f x y  

называется R-функцией, если ее знак вполне определяется знаками 

(но не абсолютными значениями) ее аргументов [10, 11]. Наиболее 

популярна следующая система R-функций 
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Эти R-функции соответствуют логическим операциям конъюнкции, 

дизъюнкции и отрицания, что позволяет строить в неявной форме 

уравнения границ сложных геометрических объектов.  

Пусть область 
1( , ..., )nF    образована путем теоретико-

множественной комбинации (объединение и пересечение) простых 

областей 
i , каждая из которых аналитически определяется неравен-

ством ( , ) 0.i x y   Если f есть R-функция, соответствующая булевой 

функции F, то неравенство, описывающее сложную область, имеет 

вид 
1( , ..., ) 0.nf     За пределами   функция 

1( , ..., ) 0,nf     

а уравнение 
1( , ..., ) 0nf     определяет границу   области  .  

Найдем решение операторного уравнения  

 Au f  (4) 

внутри ограниченной области   R
2
 при заданных краевых усло-

виях  

 |Lu    (5) 

на границе . 

Так называемая общая структура решения краевой задачи опре-

деляется выражением 

 ( , , { }) ( , { }, ),L i L iu B S         (6) 

точно удовлетворяющим граничным условиям независимо от выбора 

неопределенной компоненты ( , ).x y  Здесь BL, SL — операторы, за-

висящие от геометрии области  и участков ее границы i. Струк-

тура решения осуществляет так называемое продолжение граничных 

условий внутрь области. 

Неопределенная компонента структуры (6) представляется в виде 

ряда 

1

( , ),
N

n n

n

c g x y


        (7) 
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где ( , )ng x y  — элементы полной системы координатных функций (ал-

гебраические или тригонометрические полиномы, сплайны и др.); cn — 

неопределенные коэффициенты, которые находятся, например, методом 

Галеркина, после подстановки структуры (6) в левую часть (4).  

Краевое условие 1-го рода (5) (L — тождественный оператор)  

u

   

точно удовлетворяется структурой Дирихле 

.u    

Рассмотрим удовлетворение краевым условиям дифференциаль-

ного типа и смешанным условиям на разных участках границы. 

Функция 
n  нормализована в области Ω, если 

 0, 1.n
n 




   

n
 (8) 

Функция ( , ),x y  образованная из нормализованных функций 

( , )i x y  с помощью R-операций (3), будет также нормализована в ре-

гулярных точках границы. С учетом этого нормализованные в регу-

лярных точках границы уравнения сложных областей могут быть по-

лучены из нормализованных уравнений границ простейших 

геометрических объектов в R
2
, а также путем преобразований подо-

бия, переноса и поворота координат.  

Нормализованное уравнение дает возможность строить пучки 

функций, нормальная производная которых на границе области при-

нимает заданные значения. Для этого вводится линейный дифферен-

циальный оператор с переменными коэффициентами, зависящими от 

формы области: 

 D
x x y y

   
 
   

.  (9) 

Для произвольной достаточно гладкой функции f на границе об-

ласти   оператор D превращается в оператор дифференцирования 

по внешней нормали: 

.
f

Df





 

n
 

Аналоги оператора D для участков 
i  границы  обозначим 

через 

( ) .i i iD
x x y y

   
 
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Некоторые типы краевых условий и структуры решения соответ-

ствующих краевых задач приведены в таблице (для краевых условий 

типа Неймана функции ( , )x y  и 
2( , )x y  нормализованы). 

Структуры решения для основных типов краевых условий 

Краевое условие Структура решения 

1-го рода (Дирихле)  

u

   

u    

Смешанное (Дирихле) 

1 2
1 2,u u

 
    

1 2 2 1

1 2

u
   

  
 

 

2-го рода (Неймана)  

/u


   n  

(1 )u D    

Смешанное (Дирихле –
Неймана) 

1 2
1 2| , /u u

 
   n  

1 2 1 2(2)
1 1 2

1 2 1 2

1 ( )u D
    

      
    

 

«Жесткого защемления» 

| / 0u u 
   n  

2u     

 

Заменой 

: ( , { }, )L iu u S      

предварительно сведем исходную задачу (4), (5) к задаче с однород-

ными краевыми условиями и измененной правой частью f: 

 : ( , { }, ) .L if f A S      

Тогда в результате подстановки неопределенной компоненты (7) в 

структуру решения (6), учитывая линейность краевых условий, 

получаем разложение 

 
1

,
N

n n

n

u c


   (10) 

где ( , , { })n L n iB g     — функции базиса ,ng  трансформирован-

ного компонентой структуры BL.  

Неопределенные компоненты 
nc  разложения (10) могут быть 

найдены одним из вариационных или проекционных методов: колло-

кации, Бубнова – Галеркина, наименьших квадратов и др. 

Стационарная задача конвекции-диффузии. Суть метода рас-

смотрим для случая, когда на всех участках границы   для функ-

ции температуры заданы краевые условия Дирихле: 
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 : ; 0.U V


        
n

 (11) 

В первую очередь заменой 

:    

сведем задачу (1) с неоднородными условиями (11) к задаче с 

однородными краевыми условиями: 
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: 0.U V
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     (13) 

Общий вид итерационного процесса решения системы (12), (13) 

следующий: 
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Здесь известные либо уже вычисленные величины записаны в правой 

части выражений. 

Процесс прекращается при выполнении критерия сходимости, 

например, когда 

( 1) ( ) ( 1) ( )

1 2( ) ( )
( , ) ( , )

( 1) ( )

3( )
( , )

| | | |
max , max ,

| | | |

| |
max .

| |

k k k k

k kX Y X Y

k k

kX Y

 

 





     
   

 

 
 


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На первой итерации ( 1k  ) необходимо задать начальные при-

ближения (0) (0) (0), , .U V  Если положить 
(0) (0) (0) (0) 0,U V      

то получим решение задачи стационарной теплопроводности в от-

сутствие конвекции. 

Будем искать приближение функции ( )k  на каждом временнóм  

шаге в виде обобщенного ряда Фурье (конечного) по функциям некото-

рого базиса 
1{ }N

n nf 
 с неопределенными коэффициентами ( )k c  

( ) ( ) ( )

1 2( , , ..., ):k k k

Nc c c  

 ( ) ( )

1

.
N

k k

n n

n

c f


   (15) 

Помимо обычных ограничений на дифференцируемость потре-

буем от всех функций 
nf  удовлетворения однородному краевому 

условию  

: 0, 1, ..., .nf n N        (16) 

 Из (16) следует, что аппроксимация (15) тоже будет точно 

удовлетворять краевому условию (13).  

Нахождение базиса, удовлетворяющего условиям (13), может быть 

реализовано с помощью приема, предложенного Л.В. Канторовичем 

[14]. Для этого выберем некоторую систему функций 
1{ } ,N

n n  полную в 

подходящем функциональном пространстве (например, 1

2 ( )W   либо 

2( )).L   Это могут быть алгебраические или тригонометрические 

полиномы, сплайны и др. 

Пусть известна функция ( , )X Y  границы   замкнутой ограни-

ченной области  , причем 0  внутри  ; 0  в 2 \ ;R  0  и 
2| | 0   на .  Общий метод построения таких выражений для 

произвольных областей основан на теории R-функций, разработан-

ной В.Л. Рвачевым [10, 11]. При этом возможно получение функ- 

ции ,  обладающей достаточно высокой степенью гладкости на всей 

числовой плоскости за исключением, быть может, конечного числа 

нерегулярных точек  .  

Составим далее систему функций 

 , 1, ..., .n nf n N    (17) 

Очевидно, что в силу свойств функции   базис (17) удовлетворя-

ет условиям (16). Строго говоря, полнота системы (17) обоснована 

для случая невырождающегося положительно определенного эллип-

тического оператора, однако на практике этот базис применим и для 

решения более широкого класса задач. 
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С учетом (17) разложение (15) примет вид 

 ( ) ( )

1

.
N

k k

n n

n

c


    (18) 

Для учета условий (13) функцию тока запишем через базис 
2

1{ }N

n n   с неопределенными коэффициентами  ( ) ( ) ( ) ( )

1 2, , ..., :k k k k

Ne e ee  

 

 ( ) ( ) 2

1

.
N

k k

n n

n

e


      (19) 

По построению структура решений (18), (19) строго удовлетворя-

ет однородным условиям (13) при произвольном выборе исходного 

базиса 
1{ }N

n n . Компоненты скорости вычисляются следующим обра-

зом: 

 
2 2

( ) ( ) ( ) ( )

1 1

( ) ( )
, .

N N
k k k kn n

n n

n n

U e V e
Y X 

     
  

 
   (20) 

Подставляя (19) в левую часть третьего уравнения системы (12), 

получаем выражение для вихревой функции с неопределенными ко-

эффициентами  ( ) ( ) ( ) ( )

1 2, , ..., :k k k k

Nd d dd  

 ( ) ( ) 2 2

1

( )
N

k k

n n

n

d


     , (21) 

позволяющее согласовать ее краевые условия с зависимостью от 

функции тока. Таким образом, получено представление функции 

вихря по базисным функциям 2 2( )n   . 

Из третьего уравнения системы (12) и формул (19), (21) имеем 

 ( ) ( ), 1, ..., .k k

n ne d n N    (22) 

Таким образом, достаточно рекуррентно решать только первые 

два уравнения системы (14) и находить коэффициенты ( ) ( ), .k k

n nc d  

Рассмотрим сначала нахождение неопределенных компонент ( )k

nc  

методом Бубнова – Галеркина [6]. Подставив (18) в первое уравнение 

(14), получим невязку 

( ) ( ) 2 ( )

1

1
( ) ,

Pr

N
k k k

n n

n

c F


         (23) 

где 
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( 1) ( 1)
( ) ( 1) ( 1) 2 ( 1) ( 1)1

Pr

k k
k k k k kF U V U V

X Y X Y

 
       

      
    

. 

Необходимо выбрать коэффициенты ( )k

nc  так, чтобы получить 

невязку, наименее отклоняющуюся от нуля. В методе Бубнова –

Галеркина требуется ортогональность невязки в 
2( )L   функциям 

базиса 
1{ } :N

n nf 
 

 ( ) 0, 1, ..., .k

m dX dY m N


     (24) 

Подставив (23) в (24), получим систему линейных алгебраических 

уравнений (СЛАУ) относительно вектора неизвестных коэффициентов 
( ):k

c  

 ( ) ( 1)k kAc b , (25) 

где элементы матрицы A  и вектора ( 1)k
b  определяются следующим 

образом: 

 

2

,

( 1) ( )

1 1
( ) ( ) ( ) ;

Pr Pr

,

m n m n m n

k k

m m

a dX dY dX dY

b F dX dY

 





         

 

 


 (26) 

, 1, ..., .m n N  

Элементы 
,m na  вычисляются однократно, а развернутое выраже-

ние для ( 1)k

mb   имеет вид 

( 1) ( 1) ( 1) I ( 1) II III

1 1 1

.
N N N

k k k k

m r s msr s ms m

r s s

b c e w e w w   

  

      

Здесь 
I 2

II 2

III 2

( ) ( ) ;

( ) ;

1
,

Pr

msr m r s

ms m s

m m

w dX dY

w dX dY

w dX dY







        

       

    







G

G  

где  
0 1

1 0

 
  

 
G — матрица перестановки. 

Перейдем теперь к нахождению коэффициентов разложения (21). 
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Аналогично предыдущему случаю для второго уравнения системы 

(14) запишем невязку 

 ( ) ( ) 2 2 ( )

1

( ) ,
N

k k k

n n

n

d F


       (27) 

где 
( 1) ( 1) ( )

( ) ( 1) ( 1) Gr .
k k k

k k kF U V
X Y X X

 
      

    
    

 

Коэффициенты ( )k

nd  будем определять согласно условиям орто-

гональности невязки функциям базиса 
1{ }N

n nf 
 (метод Петрова –

Галеркина): 

 ( ) 0, 1, ..., .k

mdX dY m N


     (28) 

В итоге СЛАУ для определения вектора неизвестных 

коэффициентов ( )k
d  примет вид 

 ( ) ( 1)k kAd b , (29) 

где элементы матрицы A  и вектора ( 1)k
b  определяются следующим 

образом: 

 

2 2

,

( 1) ( )

( ) ;

,

m n m n

k k

m m

a dX dY

b F dX dY







    

 




 (30) 

, 1, ..., .m n N  

В развернутом виде 

( 1) ( 1) ( 1) I ( ) II III

1 1 1

,
N N N

k k k k

m r s msr s ms m

r s s

b d e w c w w  

  

      

где 

 I 2 2

II

III

( ) ( ) ;

( )
Gr ;

Gr .

msr m r s

s
ms m

m m

w dX dY

w dX dY
X

w dX dY
X







        
 

 
  




  









G

 

Интегралы в выражениях (26), (30) можно вычислить с помощью 

двумерных квадратур, а дифференциальные операторы в подынте-

гральных выражениях — аппроксимировать конечно-разностными ана-

логами. 

Если заданы краевые условия общего вида (2), отличные от (11), 
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при конструировании базиса следует воспользоваться другими 

структурами решения (см. таблицу). 

Интенсивность теплообмена в точке участка границы   вычис-

ляется с помощью локального числа Нуссельта  

0Nu .



 

n
 

Учитывая формулу (9), можно записать, что  

0Nu D
x x y y



    
    

    
. 

Полный поток теплоты через участок границы    

0

1
Nu Nu ,ds

l


   

где l  — длина участка .  

Нестационарная задача конвекции-диффузии. Аналогично [15], 

где задача нестационарной теплопроводности решалась методом  

R-функций, для решения нестационарной задачи конвекции-диффузии 

примéним метод Роте в комбинации с PGRM.  

Пусть вместо (1) на интервале времени [0, ]   2( /t L    — 

безразмерное время, где t — время в секундах) имеем нестационар-

ную задачу конвекции-диффузии: 

 

2

2

2

1
;

Pr

Gr ;

,

, .

U V S
X Y

U V
X Y X

U V
Y X

  
    

  

   
     

   

   

 
  
 

 (31) 

Введем разбиение интервала [0, ]  с шагом 
1k k      

( 0, 1, ..., )k K  и заменим производные по времени в (31) конечно-

разностными отношениями  

( ) ( ) ( 1) ( ) ( ) ( 1)

( ), ( ),
k k k k k k

O O
      

     
   

 

где ( ) ( )( , , ); ( , , ).k k

k kX Y X Y         

Исходная задача (31) будет сведена к последовательности задач 
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( ) ( 1) ( 1) ( 1)
2 ( ) ( 1) ( 1) ( 1)

( ) ( 1) ( 1) ( ) ( 1)
2 ( ) ( 1) ( 1)

2 ( ) ( )

( ) ( )
( ) ( )

1
;

Pr

Gr ;

,

, ( 1, 2, ...),

k k k k
k k k k

k k k k k
k k k

k k

k k
k k

U V S
X Y

U V
X Y X

U V k
Y X

  
  

  
 

   
      

   

    
      

    

   

 
   

 

 (32) 

которые пошагово решаются описанным ранее методом PGRM. При 

1k   используются начальные условия 

 

(0) (0) (0)

0 0 0

(0) (0)

0 0

| , | , | ,

| , | .

U U V V  

 

    

     
  (33) 

Численный эксперимент. Рассмотрим задачу конвекции в пря-

моугольной полости, приведенной на рис. 1 [16]. Краевые условия: 

 

1
, , : 1, 0;

2

1
, , : 0;

2

1 1
, , : 0.

2 2

H H
X Y U V

L L

H H
X Y U V

L L

H
Y X U V

L

 
           

 

 
          

 

  
          

  

n

n

n n

 (34) 

С помощью обобщенной формулы 

Лагранжа и замены безразмерной 

функции температуры   приведем эту 

задачу к задаче с однородными крае-

выми условиями относительно :  

1
:

2
f X

 
      

 
, 

где 

1 1
, .

2 2

c
h c

h c

f X X
  

       
     

 

Вместо (1) получим систему (12) с 

краевыми условиями 
Рис. 1. Задача конвекции  
в прямоугольной полости 
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1
, , : 0;

2

1 1
, , : 0.

2 2

H H
X Y U V

L L

H
Y X U V

L

 
           

 

  
          

  

n

n n

  (35) 

Общая структура решения для функции безразмерной температу-

ры имеет вид 

 1 2 1 2 1 2
1

1 1 2

( ) ( )
, ,

N
n n

n n n

n

g g
c

X X Y Y

       
        

      
  (36) 

где 
2

2 2

1 2 2

1
; .

4

L H
X Y

H L

 
      

 
 

Структуры решения для функций тока и вихря запишем соответ-

ственно в виде (19), (21) с учетом того, что 
1 2   . 

На рис. 2, а и б показаны линии уровня температуры соответствен-

но для случаев стационарного теплопереноса при отсутствии и при на-

личии конвекции в квадратной полости ( ),L H  хорошо согласую-

щиеся с результатами [16], что также подтверждалось сравнением 

значений числа Нуссельта Nu в различных сечениях. Численное интег-

рирование проводилось методом трапеций на сетке 64 × 64 узла. 

Рис. 2. Изолинии температуры: 

a — стационарная теплопроводность; б — стационарная конвекция  
(число Рэлея 4Re 1 10 )    

 

На рис. 3 приведены последовательные решения нестационарной 

задачи конвекции-диффузии, сходящиеся к решению стационарной 

задачи. Шаг по безразмерному времени 33,2 10 .    
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Заключение. Результаты численных экспериментов подтверждают 

эффективность метода R-функций в комбинации с методом Петрова – 

Галеркина (PGRM) при решении стационарных и нестационарных за-

дач свободной конвекции в полостях произвольной геометрии с раз-

личными краевыми условиями. Применение полуаналитического мето-

да R-функций позволяет получить решение задачи конвекции-

диффузии с приемлемой точностью, априори удовлетворяющее гра-

ничным условиям. В описанной форме метод дает результаты, хорошо 

согласующиеся с экспериментальными данными и решениями тесто-

вых задач при небольших числах Рэлея ( 6Ra 1 10  ). Поэтому, как и 

многие классические методы, PGRM в перспективе требует своего раз-

вития на случай 6Ra 1 10  . 
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Numerical-analytical method of solving two-dimensional 

problems of natural convection in a closed cavity 

© M.A. Basarab 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The author offers a method (PGRM) of numerical-analytical solving the equation system in 

partial derivatives describing the natural thermal convection in the complicated-shaped  

dimensional cavity with arbitrary boundary conditions. The new approach is based on a 

combination of Petrov – Galerkin method and R-functions (Rvachev functions) and makes it 

possible to obtain temperature, vortex and current functions satisfying the boundary condi-

tions in the form of expansions in certain bases. The coordinated choice of bases provides a 

natural way to approximate the boundary conditions for the flow function. Unsteady convec-

tion problems are solved by combining PGRM and Rothe method. 

Keywords: natural convection, the method of R-functions, Petrov – Galerkin method. 
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